
Quick Clusters: A GPU-Parallel Partitioning for Efficient Path
Tracing of Unstructured Volumetric Grids

Nate Morrical†,‡ Alper Sahistan§ Uğur Güdükbay§ Ingo Wald‡ Valerio Pascucci†
†SCI Institute, University of Utah ‡NVIDIA §Bilkent University

Fig. 1: Using our method, we can render volumetric shadows on large unstructured datasets while maintaining interactive frame rates.
As shown in the image above (top left is one sample per pixel (spp), bottom right is rendered to 4K spp), we can achieve up to 12
frames per second (fps) at 1 spp, at 22.2M rays per second (rps) on the 788M element Mars Lander dataset on a single workstation
GPU—nearly 5 × faster than the state-of-the-art that required eight GPUs in a supercomputer [49]—and at significantly higher image
quality and lower technical complexity than prior works.

Abstract—We propose a simple yet effective method for clustering finite elements to improve preprocessing times and rendering
performance of unstructured volumetric grids without requiring auxiliary connectivity data. Rather than building bounding volume hier-
archies (BVHs) over individual elements, we sort elements along with a Hilbert curve and aggregate neighboring elements together,
improving BVH memory consumption by over an order of magnitude. Then to further reduce memory consumption, we cluster the
mesh on the fly into sub-meshes with smaller indices using a series of efficient parallel mesh re-indexing operations. These clusters
are then passed to a highly optimized ray tracing API for point containment queries and ray-cluster intersection testing. Each cluster
is assigned a maximum extinction value for adaptive sampling, which we rasterize into non-overlapping view-aligned bins allocated
along the ray. These maximum extinction bins are then used to guide the placement of samples along the ray during visualization,
reducing the number of samples required by multiple orders of magnitude (depending on the dataset), thereby improving overall visu-
alization interactivity. Using our approach, we improve rendering performance over a competitive baseline on the NASA Mars Lander
dataset from 6× (1 frame per second (fps) and 1.0 M rays per second (rps) up to now 6 fps and 12.4 M rps, now including volumetric
shadows) while simultaneously reducing memory consumption by 3× (33 GB down to 11 GB) and avoiding any offline preprocessing
steps, enabling high-quality interactive visualization on consumer graphics cards. Then by utilizing the full 48 GB of an RTX 8000, we
improve the performance of Lander by 17× (1 fps up to 17 fps, 1.0 M rps up to 35.6 M rps).

Index Terms—Ray Tracing, Path Tracing, Volume Rendering, Scientific Visualization, Delta Tracking

1 INTRODUCTION

Unstructured meshes are an enticing format for large-scale volumet-
ric simulations, as elements can be adaptively distributed such that
important regions receive more elements—increasing local accuracy
and precision—while less important regions receive fewer elements—
saving valuable memory resources. Take, for example, the NASA
Landing Gear (shown in Figure 2), where the largest element is 4096×

larger than the finest element. An equal precision regular grid transfor-
mation would consume nearly 4 petabytes of data, while the native
unstructured mesh format requires only 11.6 gigabytes.

The power of these meshes comes from their flexibility, as elements
can twist and bend to represent complex shapes and domains. Frame-
works supporting these unstructured grids naturally extend to support
adaptive mesh refinement data, as hexahedra can be used to repre-
sent voxels in same-level bricks. Then, a combination of hexahedra,
wedges, pyramids, and tetrahedra can be used to interpolate between
neighboring bricks of different resolutions [46,51]. However, this flex-
ibility comes at a cost, as few assumptions can be made about the
structure of the underlying elements.

Challenges emerge at the level of a single primitive. Although, in



Fig. 2: Illustration of the spatial domains common to large unstructured
data, here shown for the NASA Landing Gear AMR dataset. Elements
throughout the simulation adapt in resolution to reduce memory con-
sumption. From left to right, we progressively zoom in.

their entirety, finite element meshes can adapt in resolution to improve
overall memory consumption, a single finite element consumes a con-
siderable amount of memory. Elements must store vertices and vertex
indices explicitly, unlike regular grids where the geometry of a voxel
is almost entirely implicit. As a result, meshes often need to be com-
pressed to fit within system resources; however, this compression can
easily take several hours and must support on-the-fly, localized decom-
pression during rendering [49].

Then, rendering these volumetric meshes requires quickly identi-
fying which element contains a given query point and interpolating
that element’s corresponding per-vertex values. These queries require
constructing auxiliary data structures (trees or mesh connectivity) over
the elements to facilitate fast element point location [39,42]. However,
many of these structures are surprisingly challenging to implement,
and take a significant amount of time and memory to compute [6, 49].

Once these structures are built, they can be used to optimize direct
volume rendering for point location queries that are executed along
with a set of view-aligned rays. However, determining the number
of samples required to compute clean-looking images is another chal-
lenge. For regular grids, volumes can be accurately rendered by relat-
ing the step size between each query to the voxel width, thus sampling
approximately every voxel along the ray. However, with unstructured
meshes, the widths of fine elements are much smaller than the widths
of the coarse elements (see Fig. 2). Unfortunately, relating the step
size to the finest element width results in a prohibitively expensive
number of samples per ray in coarser regions, while larger step sizes
undersample the volume.

Thus, before these datasets can be queried, they often must undergo
an expensive compression process accompanied by constructing sev-
eral auxiliary data structures that can take several hours to complete.
Then during rendering, the irregularity of these large unstructured
meshes causes modern methods to oversample coarse regions while
undersampling fine details within the data. These obstacles, and many
more, hinder the adoption of direct volume rendering as a method for
visualizing unstructured volumetric grids.

Fortunately, many of these obstacles can be overcome by challeng-
ing common assumptions made by prior works. One common assump-
tion is that preprocessing trees are required to cluster nearby elements.
These preprocessing trees are then discarded in favor of hardware-
accelerated trees built over these clusters during runtime. However,
there are much simpler and much faster means of clustering elements
that do not require an expensive preprocessing step. Then, many prior
methods assume alpha-composited ray marching is the only method
for rendering volumetric data; and yet, alternative Monte Carlo vol-
ume rendering methods exist and have several unexplored yet appeal-
ing properties for unstructured grid visualization. These Monte Carlo
methods amortize sampling expense over time, trading noise in inter-
mediate images for significantly faster frame rates and improved final
image quality. Finally, by targetting just the primary sources of mem-
ory consumption of these datasets, both the mesh and corresponding
structures can be compressed in parallel immediately before runtime to
enable visualization on a broader set of systems and architectures. By
optimizing the implementation complexity and runtime performance
of mesh compression and visualization, we believe that more applica-

tions will be able to benefit from the power and flexibility of these
adaptive finite element formats.

To this end, we present a novel approach to unstructured mesh vi-
sualization that leverages the optimal clustering properties of Hilbert
space-filling curves [28] in combination with high-performance GPU
ray tracing APIs to enable accessible, high quality, high performance,
low memory consumption rendering, all with little to no preprocessing.
We sort all unstructured elements along this Hilbert curve in parallel to
establish a structure for otherwise unstructured data. Then, we repeat-
edly leverage this resulting spatial locality to quickly generate collec-
tions of clusters that can be used to address the variety of challenges
posed by unstructured grid rendering, including memory consumption
of vertex indices, hardware BVH memory consumption, and rendering
performance. We then show how these clusters can be combined with
a Monte Carlo alternative to ray marching, called Delta Tracking, to
amortize rendering expense over time–at the trade-off of noise at in-
termediate frames–to improve visualization interactivity by adaptively
sampling cluster-localized density estimates.

More specifically, we present the following contributions:
• a method that leverages Hilbert curves and a parallel GPU sort

to cluster unstructured elements quickly,
• a strategy that leverages these clusters to significantly reduce the

memory footprint of hardware-compatible structures for acceler-
ated unstructured point queries,

• a parallel mesh re-indexing scheme that uses coarse clusters to
reduce the memory required by 2×, and

• two methods that transform object-oriented clusters into spatial
partitions for use in adaptive sampling.

2 RELATED WORKS

Recent works have made significant progress in unstructured volume
rendering. Here, we cover these prior works and how they address
memory consumption, runtime performance, preprocessing times, and
ease of implementation.

2.1 High-Performance Element Traversal
Early methods [41] rasterized tetrahedral mesh volumes by sorting el-
ements from front to back. This sorting step scales poorly to large
datasets, resulting in slow interactivity during camera manipulation.
So instead of sorting elements by visibility order, modern methods use
auxiliary data structures like bounding volume hierarchies (BVHs) or
element connectivity data to traverse from front to back.

Recent methods for unstructured mesh visualization use hardware
ray-tracing cores, otherwise known as RT cores. Unlike single-
instruction, multiple-data cores of a GPU, modern ray-tracing cores
follow a multiple-instruction, multiple-data execution model that is
better suited for divergent tree traversal [1, 15, 35]. Unfortunately,
these cores appear as a “black box” to end-users, as exact tree and
traversal implementations vary from one vendor to the next and from
hardware generation to generation. Almost all aspects of these trees—
including tree width, construction, node bounds, and quantization —
are made private. This makes utilizing these trees for tasks other than
ray-triangle intersection testing a challenge, as tree traversal cannot
be customized, nor can internal tree nodes be accessed. However, by
leveraging these frameworks, users do not need to write any code to
construct trees or for ray-tree traversal, dramatically reducing imple-
mentation complexity.

Recent methods [32, 45] use GPU ray tracing frameworks to im-
prove tree construction and query performance of unstructured meshes
by transforming the task of finite element point containment into a ray-
tracing problem that can be hardware accelerated. Although query per-
formance is fast, these works require auxiliary triangles from element
faces to leverage ray-triangle hardware intersectors, where each trian-
gle identifies two neighboring elements. Computing these triangles
requires a lengthy sequential triangle insertion step into an unordered
map, and once found, a hardware tree must be built over them. These
data structures consume a prohibitive amount of time and memory to
compute and store and therefore do not scale to large meshes.

Alternatively, rays can march from element to element using con-
nectivity data [34]. The recent work by Sahistan et al. [40] improves



(a) (b) (c) (d) (e)

Fig. 3: a) clusters of elements from the TACC Japan Earthquake dataset,
used for adaptive sampling. b) artifacts caused by adaptive ray march-
ing methods [31, 50] due to undersampling. c) unbiased adaptive sam-
pling using our delta tracking approach. d) and e) demonstrate the bene-
fits of shadows on the perception of depth, which we additionally support
thanks to Delta Tracking. (Intermediate images converged to 4000 SPP.)

the performance and complexity of tetrahedral mesh marching by us-
ing GPU ray tracing frameworks and cores to identify where rays en-
ter and exit the volume. Then, they apply an exclusive-or compacting
scheme by Aman et al. [2, 3] to reduce memory bandwidth and sig-
nificantly improve performance when marching from one tetrahedron
to the next. Unfortunately, computing the required connectivity data
is often an arduous preprocess, and storing it quickly becomes pro-
hibitively expensive, especially as datasets grow larger [19]. The ap-
proach by Aman et al. also requires tetahedralizing pyramids, wedges,
and hexahedra, which increases the number of elements, and, there-
fore, memory consumption up to 6× [32, 34].

2.2 Space Skipping and Adaptive Sampling
As these data sets grow large and irregular (cf. Figure 2), it becomes a
challenge to adequately sample small features within a large domain.
If done naively, too small of a step size between queries results in
oversampling coarse elements, which is detrimental to rendering per-
formance. Increasing the step size improves performance but results
in undersampling small features of interest. Therefore, sampling rates
need to adapt to the underlying data. However, to our knowledge, very
few works address this issue for unstructured meshes, and none do so
in a way that is free from visual artifacts.

For adaptive sampling, prior works have proposed to adapt the step
size along the ray depending on local statistics or the resolution of
the data [12, 21, 26, 30, 31, 50]. Recent methods [31, 50] trace rays
through non-overlapping clusters of unstructured elements, skipping
empty space and adapting the sampling rate by the variance of the
scalar field within each cluster. Due to the “black box” nature of
hardware-accelerated trees and the requirement that clusters do not
overlap, these methods require an expensive top-down KD tree build
over the unstructured elements. This KD tree construction can take
several hours, as each tree level requires sorting elements to compute
split planes. This method also relies on opacity correction to account
for the now spatially varying sampling rates, as proposed by Engel et
al. [10]; however, this opacity correction is more beneficial in the con-
text of sheer warp algorithms [24]—where the apparent thickness of
a slice of voxels depends on the viewing angle—and does not correct
for undersampling errors in high-density regions. As a result, artifacts
can be seen during adaptive sampling, as demonstrated in Figure 3.

In the context of regular grids and cinematic rendering, some appli-
cations [23] drop alpha-composited ray marching in favor of stochastic
null collision methods like Delta Tracking, as tracking methods have a
lower algorithmic complexity with respect to scatter interactions than
alpha-composited ray marching. This is because composited marching
methods require secondary rays be traced for each sample taken along
a primary ray, which results in an exponential number of rays as scat-
ter interactions increase. To address this, shadow maps can be used
to cache visibility from light sources to maintain camera interactivity
with alpha-composited ray marching [5]; though, these maps must be
recomputed on transfer function and lighting changes, and consume
additional memory. For our application, these data structures would
require separate techniques to be developed to support unstructured
grids. Alternatively, if low frequency shadows are acceptable, fewer
samples can be taken along shadow rays. On the other hand, tracking
methods require only a linearly increasing number of rays per scatter

interaction, as these methods only consider the particle at the sampled
distance, and therefore do not require any precomputation to maintain
interactivity.

Additionally, these tracking methods allow for artifact-free adaptive
sampling [43, 44, 53] through localized maximum density estimates
along the ray. Kalos et al. [44] propose traversing through an easy-
to-compute grid of macrocells to identify more tightly bounding local
maximum density. They use a 3D digital differential analyzer (DDA)
algorithm to traverse through these cells, reading local density esti-
mates from the macrocells to adapt the underlying sampling rate. In
the context of scientific visualization, the work by Günther et al. [16]
employs a macrocell-based Delta Tracking approach to render finite-
time Lyapunov exponent fields adaptively. Recent prior works [18,27]
also propose moving to Delta Tracking methods to achieve adaptive,
high-quality visualization of medical volumes.

To our knowledge, no prior works have explored the use of adap-
tive Delta Tracking for unstructured mesh visualization. However, as
shown in Figure 3, this Monte Carlo approach has clear benefits for
performance and image quality. We refer to our supplemental for more
information on how alpha-composited ray marching and Monte Carlo
Delta Tracking compare.

2.3 Compression
As these meshes grow large, storing these datasets within GPU mem-
ory is challenging. Prior works optimize the memory footprint of the
mesh as well as corresponding acceleration structures to reduce mem-
ory consumption. Naive approaches construct bounding volume hi-
erarchies down to the individual element with a branching factor of
two, resulting in a significant number of internal nodes that consume
a large amount of memory. To remedy this, prior works [9, 11, 48]
use wider branching factors to reduce the number of internal nodes
significantly and, therefore, overall memory consumption. Benthin
et al. [6] additionally show that internal nodes of wide BVHs can be
quantized relative to their parent bounds, further reducing the bytes
used per node. Unfortunately, these trees are incompatible with ray-
tracing cores and are slow to traverse in software; however, the works
by Wald and Morrical [32,45] compare the memory consumption of a
four-wide quantized BVH against a hardware-accelerated BVH used
by NVIDIA’s Turing architecture and demonstrate a similar footprint.

Ströter et al. [42] propose to sort tetrahedra in parallel on a Morton
space-filling curve, then construct a memory-efficient OLBVH similar
to the LBVH by Lauterbach et al. [25]. Their approach requires pre-
computing neighboring element connectivity data, which can be done
for tetrahedral meshes using the GPU-optimized structure by Mueller-
Roemer et al. [33]. Although their method does consume less memory
than hardware-accelerated trees, this compression comes at a perfor-
mance cost, as their method is several magnitudes slower than that
by Wald [45], even on GPUs using a software fallback to ray-tracing
cores. This method also requires users to construct and traverse these
trees themselves.

Wald et al. [49] recently proposed a memory-efficient encoding that
compromises rendering performance to reduce memory consumption
significantly. Their work constructs a wide BVH with quantized nodes
and then reduces the number of bits per element index by dividing the
mesh into submeshes referencing no more than 216 vertices. Then,
a per-leaf element reordering is used to reduce the memory footprint
of child pointers within the tree. Though their method saves an im-
pressive amount of memory, constructing these wide compressed trees
is complex and requires several hours of preprocessing. Traversal is
also nontrivial, as nodes must be decompressed on the fly, and it re-
quires eight nodes on a supercomputer to achieve a semi-interactive
2.5 fps on the Small NASA Mars Lander dataset. Then, like the work
by Morrical et al. [31], Wald et al. discard the top levels of their data
structure, substituting with a second top-level tree that is compatible
with ray-tracing cores.

3 METHOD

We present a high-quality direct volume rendering method for large un-
structured grids with a low implementation complexity that still scales



to very large data. The proposed method focuses on GPU architec-
tures with ray-tracing cores; however, in theory, the techniques we
offer should also work with CPU ray tracing frameworks and GPUs
with software fallbacks to ray tracing hardware.

3.1 Baseline Unstructured Mesh Renderer
We begin by implementing a simple baseline method [32] with an
off-the-shelf GPU ray tracing framework compatible with ray-tracing
cores. By building off these frameworks, we significantly reduce
the implementation complexity and improve the performance of our
method, especially for BVH construction and traversal. Naturally,
these frameworks will impose several constraints that will direct the
design choices with our method, as we cannot change internal aspects
of these frameworks like BVH construction or ray traversal.

First, we load our unstructured mesh into memory. Vertices of the
mesh are stored in a list of float3 representing x, y, and z coordi-
nates, respectively. For simplicity, we assume that each mesh vertex
is associated with a single corresponding scalar value. Then, we load
all tetrahedra indices into a list of 32-bit ints, such that each tetrahe-
dron corresponds to four unique, contiguous indices. Pyramid indices
are stored in a separate list, as are wedges and hexahedra, each using
five, six, and eight indices per element, respectively. Thus, our unstruc-
tured mesh consists of one list of vertices, one list of scalar values, and
four lists of indices—one for each element type. With this format, we
can efficiently load elements from disk by storing and loading these
lists as large contiguous binary arrays that we copy all at once into
memory. Once loaded, we copy these lists to the GPU for on-the-fly
pre-processing.

Modern GPU ray tracing frameworks focus on ray-triangle in-
tersection testing; however, our primitives are not triangles. Prior
works [32, 45] tessellate element faces, using ray-triangle intersectors
to significantly improve query performance; however, triangulating el-
ement faces consumes a prohibitive amount of memory. Therefore, we
instead use a more memory-efficient custom primitive type, where ray-
tracing cores traverse through a tree of bounding boxes but return to
software when query points intersect the leaves. Note that hardware-
accelerated rays can be made to act like point queries by setting the ray
origin to the query point, then choosing an arbitrary direction and set-
ting the T_MIN and T_MAX values to 0. So long as T_MIN equals 0, all
primitive bounding boxes intersecting the ray origin will be returned
to the user.

To use a custom primitive, these ray tracing APIs require us to
supply primitive bounding boxes and a handwritten intersection test.
So for every element in parallel, we compute a bounding box over
that element’s vertices, storing bounding boxes for tetrahedra, wedges,
pyramids, and hexahedra in separate lists. We also compute a global
bounding box in parallel over all mesh vertices by using atomic min-
imum and maximum functions over the vertex coordinates. Next, we
create a custom geometry structure for each element type, allowing
us to write four different intersection tests in our ray tracing frame-
work. The appropriate intersection test will be called when a ray hits
a bounding box belonging to a particular element type. We then con-
struct a tree over these lists of bounding boxes using the ray-tracing
API’s high-performance tree construction method.

Next, we write a custom intersection program for each element type.
When a ray hits a bounding box containing an element, we read all
element indices and vertices into local registers. Then, we test to see
if the ray origin is contained within our element. If so, we interpolate
the corresponding per-vertex values, returning the result in a register
associated with the ray—typically called a ray payload register. This
intersection test and interpolation can be done using Newton’s method,
and we provide relevant code for them in our supplemental.

Finally, we need a colormap to convert scalar data values sampled
from the volume into colors and corresponding alpha-transparency val-
ues to render this data volumetrically. Typically this colormap is ed-
itable at runtime to enable interactive exploration of the data, where
each edit uploads the updated colormap to the GPU. To create our final
image, we write a ray generation program where we trace view-aligned
rays out from the camera origin and compute an intersection distance

to the front and the back of the global volume bounds. We then march
along these rays, sampling the volume at a user-specified sampling
rate, using the colormap to transform the sampled scalar value into
color and corresponding alpha value, which we can composite from
front to back and store in our image framebuffer.

3.2 Tree Compression through Hilbert Clusters
This baseline method by Morrical [32] is a good starting point, as we
can render unstructured volumes without lengthy preprocessing steps.
Right now, we only require constructing a hardware-accelerated tree,
which we can do in real-time using our GPU ray tracing framework.
However, some fundamental issues with the current approach prevent
us from rendering large unstructured grids. One limitation is that our
trees currently consume too much memory.

3.2.1 Hilbert Leaf Clusters
Currently, we construct our trees down to the individual element. This
results in a costly number of internal nodes near the leaves of the tree—
as trees grow exponentially with depth—and as a consequence, our
BVH consumes more memory than the unstructured mesh does. To
solve this, we could follow the method by Wald et al. [50], and build
a second, highly compressed BVH on the CPU in a top-down process.
Then, we could follow the nested-hierarchies approach proposed by
Gralka et al. [14] and construct a hardware-compatible tree over highly
compressed treelets to still leverage the performance of ray-tracing
cores. However, as shown by prior works, constructing compressed
trees top-down on the CPU requires several hours of preprocessing
time and introduces technical complexity to the method.

Interestingly, the work by Gralka et al. demonstrates that com-
pressed treelets provide performance benefits over simpler flat lists
of primitives only when a treelet stores more than 128 primitives.
For smaller clusters of primitives, they suggest forgoing treelets in
favor of simpler flat lists of elements contiguous in memory. With
these small flat primitive clusters, memory is reduced by eliminating
bounding boxes and child/node pointers in the tree. Additionally, as
shown by an earlier work by Wald. [45], the hardware-accelerated
BVHs we currently build have a similar memory footprint to com-
pressed quantized BVHs like those by Benthin et al. [6]. There-
fore, we can achieve nearly all the memory optimizations proposed
by Wald’s compressed data structure [50] by aggregating primitives
into small flat lists less than 128 primitives in length, then construct-
ing a hardware-accelerated BVH over these clusters. Furthermore, as
shown by Gralka et al., for flat lists containing 16 primitives or fewer,
traversal performance should still greatly benefit from hardware accel-
eration. From here on, we refer to these clusters as Leaf Clusters.

Unfortunately, in the current state of our data, the underlying ele-
ments of our mesh are ordered unpredictably. If we were to group
sets of N elements into one primitive bound, neighboring elements in
memory may lie on opposite sides of the spatial domain. Although we
would significantly reduce our acceleration structure’s memory foot-
print, our primitive bounding boxes could contain a significant amount
of empty space and would very likely overlap. As a result, our render-
ing performance would quickly degrade to non-interactive frame rates
due to poor culling performance. Indeed, through our experimentation,
we found that simply aggregating two neighboring elements together
in their original memory order resulted in a complete lock-up of the
system on the data sets we use for evaluation.

Fortunately, this element ordering in memory can be easily changed
without affecting the spatial data representation, and we can do so with-
out requiring secondary trees like those used by prior works. So as
a first step, we sort our elements along a space-filling curve exhibit-
ing nice clustering properties, using an off-the-shelf GPU radix sort.
For simplicity, we recommend the radix sort routine made available in
NVIDIA’s CUB library, though the fast four-way radix sort by Ha et
al. [17] would also work well.

The space-filling curve we use is vital to generating high-quality
clusters without significant overlap. At first, we explored Morton order
curves, which can be computed by first quantizing element centroids
to a fixed grid spanning the bounding volume of the entire dataset,



(a) BVH (b) KD (c) Macrocells (d) Morton (e) Hilbert

Fig. 4: A visual comparison between clustering methods on the Mars
lander for 100K clusters.

then interlacing the bits of the individual quantized dimensions of the
element centroids. For the purposes of our application, we used 48-bit
codes, with 16 bits allocated per dimension. These codes might not
be unique per-polyhedra, as the quantization process might assign two
or more polyhedra to the same cell. However, only a few polyhedra
will receive identical codes, and when they do, we assume they will be
sufficiently nearby in space for reasonable clustering.

Sorted elements can then be clustered by dropping N least signifi-
cant bits in these codes and then clustering neighboring elements with
identical sub-codes. To establish intuition on this process, these Mor-
ton codes can be thought of as a round-robin middle-split KD tree,
and by dropping N least significant bits and clustering elements with
identical subcodes, this process can be interpreted as extracting the in-
ternal nodes from this implicit KD tree. This process is very similar to
the first step employed by parallel tree construction routines like the
LBVH proposed by Lauterbach et al. [25], with the only difference
being that we compute just the bounds of the leaves of LBVH, rather
than the full tree.

Unfortunately, we ran into several undesirable issues with Morton
codes. First, the number of least significant bits to drop is a user-
defined parameter, and it is difficult to determine what this number
should be. Drop too many bits, and all elements get clustered together;
drop too few, and we end up with many leaf clusters containing only
a single element. This is problematic because we want to keep the
number of primitives per leaf less than 128 to still benefit from hard-
ware acceleration from ray-tracing cores, but we also need more than
one element per cluster; otherwise, we do not realize any memory sav-
ings. Alternatively, we could choose to cluster primitives into equal
length subsets, thus guaranteeing each leaf cluster contains exactly N
primitives. However, Morton codes exhibit undesirable large jumps
at higher levels of the implicit KD tree, which result in suboptimal
bounds when clustering equal length subsets together.

So instead, we sort elements by their centroid on a Hilbert space-
filling curve. Just like a Morton curve, we can quantize element cen-
troids to a fixed resolution grid before sorting key-value pairs with
a parallel GPU radix routine. However, as Moon et al. [28] demon-
strated, Hilbert curves provide more optimal clustering properties and
do not exhibit the large undesirable jumps that Morton curves do. Al-
though Hilbert codes are slightly more challenging to compute than
Morton codes, they are still nearly instant to compute relative to
treelets. Still, for reference, we include a non-recursive Cartesian-to-
Hilbert implementation in our supplemental material, as described by
Butz [8], then simplified by Moore [29]. A visual comparison between
clusters generated from BVH nodes, KD tree nodes, Macrocells, Mor-
ton curves, and Hilbert curves can be seen in Figure 4.

3.2.2 Hilbert Instance Clusters

By sorting our elements along a Hilbert curve and clustering neighbor-
ing elements together, we can significantly reduce the final memory
consumption of our BVH. However, as found by prior works [45], cur-
rent GPU ray tracing frameworks exhibit a different peak memory con-
sumption versus final memory consumption when constructing trees.
If too many primitives are stored within a single acceleration structure,
the scratch memory required to build this tree on the GPU can quickly
become prohibitively expensive. Though future GPU tree construc-
tion implementations may reduce this peak memory consumption, a
workaround to this problem is to divide elements of the unstructured
mesh into different bottom-level acceleration structures, then build

(a) (b)

(c) (d)

Fig. 5: An illustration of how elements are sorted along the Hilbert
space-filling curve (a and b). Once sorted, neighboring elements can
be clustered into small leaf clusters (in c, represented with sold lines) to
reduce final tree memory consumption, and into larger instance clusters
(in d, shown with dashed lines) to reduce peak tree memory consump-
tion, as well as for mesh index compression.

each of these smaller trees in series, and then instantiate these trees
in a final top-level acceleration structure.

To do this, prior works [32, 45] propose to divide unstructured el-
ements in memory order into groups of one million elements each;
however, as discussed before, clusters of neighboring elements with an
unpredictable ordering in space relative to memory will likely gener-
ate bounds containing many empty spaces overlapping other clusters.
This would then degrade instance culling performance during traver-
sal. Therefore, we propose slightly modifying this pre-splitting strat-
egy, where we reuse our previously Hilbert-curve-reordered elements
to generate higher-quality clusters of one million elements each. From
now on, we refer to this second type of cluster as an Instance Cluster.
Like these prior works, this pre-splitting strategy reduces peak mem-
ory consumption to acceptable levels. However, with our approach,
these bottom-level acceleration structures will have less overlap when
instantiated in the top-level acceleration structure than the overlap of
prior works. This should improve the performance of our point loca-
tion queries to be similar to if we were using one unified tree, though
we primarily do this pre-splitting out of necessity. An illustration of
this instance clustering process—as well as the prior leaf clustering
process—is shown in Figure 5.

3.3 Mesh Compression through Re-Indexing
At this point, we have a relatively memory-efficient and accessible
method for querying our unstructured elements. Still, prior works [50]
go on to compress the unstructured mesh itself. Element indices con-
sume a significant amount of memory and make up the majority of the
footprint of our unstructured mesh. Currently, we use 32-bit integers
to represent our indices, which can address up to 232 vertices. If we in-
spect the contents of these indices, we will find a considerable amount
of redundancy in the most significant bits. This is because more sig-
nificant bits naturally change less frequently than less significant bits
when storing ascending addresses. Fortunately, we can leverage this



redundancy to cut our effective mesh memory footprint in half.
To implement index compression, we can split the mesh into mesh-

lets such that each meshlet references fewer than 216 vertices. Then,
we can replace the global list of vertices with smaller, per-meshlet ver-
tex lists. As a consequence of splitting our mesh into meshlets, vertices
from the global vertex list will be duplicated when referenced by more
than one meshlet. Ideally, these meshlets would have a small outer
surface area relative to their volume to minimize vertex replication
throughout this process.

Wald et al. [50] address this issue by constructing a tree over the
unstructured elements from the top down. During construction, tree
nodes are split by a surface area heuristic until they reference fewer
than 216 vertices; however, when meshes contain billions of elements,
reordering primitives at each node split is slow and expensive. So
instead, we propose to transform the instance clusters previously gen-
erated in Section 3.2.2 to reduce peak memory consumption during
hardware BVH construction to also serve as our meshlets for index
compression. Previously, these instance clusters contained one mil-
lion elements each. We reduce the size of these instance clusters to
approximately 30,000−60,000 elements, reducing the number of ver-
tices referenced per instance cluster. Then, we make instance clusters
referencing more than 216 vertices use 32-bit indices, while instance
clusters with fewer than 216 vertices use 16-bit indices.

Given an instance cluster of elements, we need a way to efficiently
compute that cluster’s vertex list and the new indices that reference this
list. We follow a prior mesh re-indexing method [47] that re-indexes
meshes in parallel on the GPU. We propose slightly modifying this par-
allel re-indexing method to improve re-indexing performance. More
specifically, we remove the requirement that duplicate vertices be elim-
inated. Removing duplicate vertices requires sorting all vertices in the
global list for each instance cluster. Since we have potentially thou-
sands of instance clusters, these sorts quickly become prohibitively
expensive to do during application startup.

Instead, we assume the unstructured mesh does not contain dupli-
cate vertices, and if it does, we preserve those duplicates to avoid sort-
ing. We substitute this sort with a parallel flagged device selection
operation to collect all vertices marked as used into a new subset. This
selection process can be implemented in parallel on the GPU through
an inclusive prefix sum (minus one) over an array of “isUsed” flags
for each vertex; however, we recommend using the flagged device se-
lection operation provided by NVIDIA’s CUB library for simplicity
and improved performance.

An illustration of this re-indexing process is shown in Figure 6. This
data transformation is much faster than prior works but can take sev-
eral minutes depending on the number of instance clusters that need re-
indexing; so for large datasets, we recommend minimizing the number
of instance clusters required for index compression.

3.4 Adaptive Sampling through Delta Tracking
Now that our data fits within system resources, we will re-evaluate our
rendering approach. Adequately sampling these datasets with a naive
ray marcher requires an unacceptably high number of samples to suf-
ficiently sample the small cells of interest. To address this issue, prior
works [43,44,53] adapt the sampling rate to the underlying data by first
gathering maximum density estimates along the ray, which are stored
in clusters of elements. Unfortunately, unstructured elements make
these algorithms difficult to implement, as these methods require that
adaptive sampling clusters do not overlap. Therefore, we propose two
ways to efficiently transform our Hilbert clusters into non-overlapping
spatial partitionings for use with these adaptive sampling methods.

3.4.1 Hilbert Adaptive Sampling Clusters
We introduce a third cluster type, Adaptive Sampling Clusters, where
we again use our Hilbert-ordered elements to quickly generate a set
of clusters with an equal number of primitives each. Additionally, for
each cluster, we now store the minimum and maximum scalar data
value within that cluster. Once these clusters are identified, we build a
hardware-accelerated BVH over the cluster bounds to facilitate traver-
sal.

(a) Two clusters from a mesh (b) Element Indices

(c) IsUsed Buffer and Permutation (d) Compressed Cluster Indices

Fig. 6: An illustration of our parallel mesh reindexing to reduce bits per
element index. In a), subsets of the mesh are clustered along a Hilbert
curve. b) The indices of these elements reference a global vertex array
and consume 32-bits per index. c) For each cluster, we mark used ver-
tices in parallel, compacting away any unused vertices. We also create
a permutation table for each cluster, mapping old vertex addresses to
new ones. d) This results in smaller mesh clusters, whose bits-per-index
can be reduced due to the smaller per-cluster vertex lists.

(a) Scalar Range (b) Linear Max Density Search

Fig. 7: a) Clusters store the range of scalar field values of the contained
primitives. These scalar values are mapped into a color and correspond-
ing density through a transfer function. b) During transfer function edits,
we perform a linear search over this range to compute maximum extinc-
tion values per cluster for adaptive sampling.

Once we have a set of boxes with local estimates for minimum and
maximum data values, before rendering, we need to transform these
minima and maxima into a set of maximum density estimates consid-
ering the currently applied transfer function. Our approach is similar
to prior works [31], but we focus on computing only maximum den-
sity rather than data variance. For every cluster, we use the per-cluster
minimum and maximum data values to iterate over the range of the
transfer function density values that affect the contents of the current
cluster. We compute the maximum extinction value during this iter-
ation and store this as our current maximum density estimate. (See
Figure 7 for an illustration of this process.) We then calculate the max-
imum density for each cluster in parallel on the GPU whenever the
transfer function is edited.

3.4.2 Option I: Cluster Rasterization into Ray-Centric Bins

To adaptively sample our large unstructured data sets, we need an effi-
cient way to transform our overlapping clusters into non-overlapping
maximum extinction segments along our ray (see also the pseudocode
in our supplemental material). We begin by intersecting our ray with
the bounding box of the entire volume, calculating the enter and exit
distances along the ray. Next, we divide the interval defined between
this enter and exit distance into a constant number of disjoint, equidis-
tant segments. Then, we allocate a bin to store the maximum extinc-
tion value along each segment, initializing each bin to a value of 0 (i.e.,
fully transparent).

Once the segment bins are allocated and initialized, we trace a sec-
ond ray through the previously obtained adaptive sampling clusters.
For each cluster we intersect, we “rasterize” the maximum extinction



(a) Cluster to Ray Bin (b) More Rays (c) Cell to Grid

Fig. 8: In a) clusters (top middle) are generated from mesh elements
(top), then maximum densities of intersected clusters are rasterized
(bottom middle) into bins along the ray (bottom). In b), for highly non-
uniform datasets (top), we break up our ray (bottom three rows) to in-
crease bin counts and reduce majorant error (in red). Alternatively, in
c) clusters (top middle) are generated from mesh elements (top) like be-
fore, but now we rasterize them into a grid of macrocells, which we can
traverse using 3D-DDA (bottom middle), producing non-even, but also
non-overlapping adaptive sampling intervals along our ray (bottom).

associated with the intersected cluster into the bins of the overlapping
ray segments. This rasterization process occurs as clusters are "splat"
into 1D segments along the 3D ray, which is slightly different from
classical rasterization where triangles are "splat" onto pixels on a 2D
screen. This process effectively transforms our object-space partition-
ing into spatial partitioning, though our maximum extinction estima-
tion becomes more approximate at the compromise. See Figure 8 for
an illustration of this process.

In practice, we allocate these bins using ray payload registers to
avoid unnecessary VRAM traffic during traversal and cluster rasteriza-
tion. At the time of writing, current GPU architectures are limited to at
most 32 ray payload registers. To further improve precision, we break
up this long ray into M shorter ray segments, with N bins per ray where
N <= 32, and where M is a user-chosen parameter depending on the
dataset being rendered and the precision required. Two rays give an
effective resolution of 64 bins along our ray, four rays give 128 bins,
and so on. (See also Subfigure 8b.) Then, we bounce back and forth
between binning clusters and the Delta Tracking process. If our ray
collides with a particle inside the volume, we can terminate traversal
early without necessarily tracing all of our adaptive sampling rays.

3.4.3 Option II: Cluster Rasterization into a Macrocell Grid
We also explore a second method that transforms our object-oriented
clusters into a spatial partitioning via a macrocell grid (see also the
pseudocode in our supplemental material). At the cost of some mem-
ory, we can achieve approximately the same resolution as our ray bin-
ning method by allocating an auxiliary regular grid whose side length
is numBins/

√
3. We make each voxel within this grid contain a min-

imum and maximum scalar value, which we initialize to FLOAT_MAX
and FLOAT_MIN, respectively.

Then, for each adaptive sampling cluster in parallel, we use GPU
atomics to rasterize each cluster’s minimum and maximum scalar val-
ues into all cells of our regular grid that the cluster intersects. This
region of interest can be found by rounding up and down each clus-
ter’s upper and lower bounds to the nearest regular grid cells. Once
this is done, as we edit our transfer function, we compute the maxi-
mum density values for all of the regular grid bins in parallel using the
same approach described in Section 3.4.1. One exception is that we
assign a maximum density of 0 (i.e., fully transparent) to all regular
grid bins whose scalar value ranges are uninitialized, i.e., FLOAT_MAX
and FLOAT_MIN, meaning no cluster touches that bin.

Finally, during rendering, we can traverse through these non-
overlapping grid cells using a 3D Digital Differential Analyzer (DDA)
algorithm [4]. This algorithm draws a line through the cells of the grid
in order along that line. In our case, that line is our volume sampling
ray. For each cell returned by DDA, we read the majorant density at
that cell and determine where the ray enters and exits that cell to com-
pute our non-overlapping segment for adaptive sampling. (See also

Subfigure 8c.) By using DDA to traverse through these cells rather
than the GPU’s ray-tracing cores, we reserve the use of these cores for
polyhedra point location queries.

3.4.4 Adaptive Delta Tracking of Unstructured Data
Now that we have a disjoint set of bins containing maximum extinc-
tion estimates, we can use a piecewise constant adaptive delta track-
ing approach to reduce the number of samples taken from the volume
to improve rendering performance. Instead of immediately marching
through the volume, we first iterate over the ray segments made by the
previous step. We compute a localized enter and exit distance for each
bin allocated along the ray for just the current segment. If the maxi-
mum extinction value for the segment is 0, the current segment repre-
sents empty space and can be skipped altogether. Otherwise, we use
the maximum extinction value associated with the current segment to
sample free flight distances. Now that we are using accurate maximum
extinction estimates, the probability of a null collision is significantly
reduced, increasing the sampled step size and reducing the number of
rejected samples taken from the volume. If the sampled distance from
delta tracking passes the end of the segment, we iterate to the next seg-
ment allocated along the ray, resetting the sampled distance to account
for the change in the maximum extinction estimate.

We can then use this additional performance to improve the quality
of the visualization. After tracing a ray through the unstructured data,
adaptive delta tracking will return a single representative free flight
distance. For pure emission and absorption rendering modes, we re-
turn the color of the volume at that distance. To simulate shadows,
we trace a shadow ray originating at this final free flight distance and
in the direction of the directional light source. This shadow ray oper-
ates similarly to the adaptively sampled primary ray. First, an adaptive
sampling ray is traced towards the light to collect maximum extinction
estimates into a set of bins allocated along the ray. Then, an adaptive
delta tracking routine is employed to determine if the light is visible or
occluded depending on if the ray makes it through the entirety of the
volume without an absorption event occurring. We then use the results
of this shadow ray to shade our primary ray’s volumetric sample.

4 EXPERIMENTAL RESULTS

To evaluate our method, we use OptiX 7 [36] to access hardware-
accelerated ray tracing functionality in NVIDIA GPUs. All mea-
surements were taken using an NVIDIA RTX8000 GPU and an In-
tel i9 12900K processor. All images were rendered at a resolution of
1024×1024 up to 4000 samples per pixel, with one sample per frame.

4.1 Datasets
With this hardware, we performed a series of tests on a collection of
unstructured data sets of varying sizes (cf. Figure 9):

1) The TACC Japan Earthquake simulates the effects of the 2011
earthquake and subsequent tsunami that hit Japan. Scientists resolved
the movement of the seismic waves using an adaptive grid; however,
our copy of this data set consists of non-adaptive, roughly equally-
sized hexahedra.

2) The Deep Ocean Impact is derived from AMR [37] and comes
from an xRage [13] simulation of an asteroid impacting the ocean.

3) The NASA Landing Gear is derived from AMR and visualizes the
vorticity of air around the landing gear, simulated with NASA’s LAVA
code [22]. Coarse cells are 212× larger than the finest cells.

4) The NASA Mars Lander visualizes a retropropulsion study to de-
celerate the Mars lander entering the martian atmosphere [20]. This
data was simulated using NASA’s FUN3D code [7] and consists of
nearly a billion mixed finite elements that vary significantly in volume.

5) Cell Variance Datasets are synthetic datasets of 3 million cells
each, used to evaluate how sensitive our method is to varying cell sizes.
We generate a Delaunay tetrahedralization over random points gener-
ated through a Poisson sphere sampling method, resulting in evenly-
sized tetrahedra. These vertices are then displaced randomly, up to the



(a) Earthquake
48M Elements

(b) Impact 20K
247M Elements

(c) Landing Gear
291M Elements

(d) Mars Lander
789M Elements

Fig. 9: Data sets used for testing. Impact and Landing Gear are adaptive mesh refinement simulations, while Earthquake and Mars Lander are
fully unstructured finite element meshes. All images are rendered at 1024x1024, at 1 spp per frame (top right of each image), with one primary ray
and one shadow ray per pixel, and are converged over time to 4000 SPP (bottom left of each image).

Table 1: Memory usage of our test models. Each data type is given before and after instance cluster mesh compression. All datasets are clustered
into instance clusters containing 30k-60k primitives in order to keep the referenced vertices within each cluster less than 216 for mesh index
compression. We also store 16 elements per leaf cluster to reduce tree memory consumption per instance cluster.

Pre Compression (1 element / leaf cluster) Post Compression (16 elements / leaf cluster)

Model Vertices Indices BVH size Total Vertices Indices BVH size Total

Earth 0.59 GB 1.42 GB 0.40 GB 2.41 GB 0.69 GB 0.73 GB 0.08 GB 1.50 GB
Impact 1.97 GB 6.00 GB 2.11 GB 10.1 GB 2.28 GB 3.00 GB 0.46 GB 5.74 GB
Gear 2.93 GB 7.72 GB 6.20 GB 16.9 GB 3.37 GB 3.86 GB 0.45 GB 7.68 GB
Lander 1.62 GB 12.14 GB 16.9 GB 30.6 GB 1.86 GB 6.65 GB 1.20 GB 9.71 GB

Poisson sphere radius, to introduce variance in the derived tetrahedra
sizes (see the supplemental for an illustration).

4.2 Evaluation

With these datasets, we measure our method’s preprocessing time,
compression effectiveness, and rendering performance.

4.2.1 Clustering and Compression

Table 1 shows the effectiveness of our Hilbert clusters and mesh re-
indexing in reducing memory consumption. As shown, we achieve
compression factors between 0.32 and 0.70. We also outperform the
compression method by Wald et al. [49] for all but the Mars Lander
dataset (ours at 9.71 GB, theirs at 9.3 GB).

Table 2 shows the evaluation of our Hilbert clusters’ performance
versus memory consumption. We incrementally cluster more and more
elements together, building trees over these different cluster sizes and
measuring the impacts on memory consumption of the BVH as well
as rendering performance. For the majority of our datasets, cluster-
ing neighboring elements results in significant tree memory reductions
while still maintaining interactive performance. We did notice a drop
in performance on Landing Gear as more and more elements were
clustered together at the leaves, which we hypothesized might be a
sensitivity to highly varying cell sizes. Indeed, strong variance in cell
size degrades performance somewhat, as shown by our synthetic Cell
Variance benchmarks, but only by about 6.8%. Therefore, we suspect
that the majorant estimate for Landing Gear is poor, resulting in many
null collisions, which grow linearly in expense with leaf cluster size.

Table 3 compares time to cluster elements of the Mars Lander
Dataset by splitting the mesh into equal-sized clusters using differ-
ent approaches, including a KD tree, a BVH, and our Hilbert cluster-
ing. Top-down KD tree construction on the CPU quickly becomes im-
practical to compute as cluster sizes decrease, requiring a prohibitive
amount of memory. Bottom-up LBVH construction on the CPU does
much better but still is relatively impractical for generating small clus-
ters of elements immediately before rendering. Hilbert clusters can be
formed with a single sort, independent of cluster count; hence, they
can be computed at runtime.

Table 2: A performance versus memory consumption evaluation of our
Hilbert clusters for different cluster sizes for two NASA datasets. Base-
line signifies the case where elements are not sorted along the curve.

Model baseline 1 4 8 16 32

Lander Accel GB 16.9 16.6 4.5 2.3 1.2 0.6
FPS/RPS 11.5 / 24.1 13.8 / 28.9 11.7 / 24.5 10.0 / 20.9 8.2 / 17.2 5.8 / 12.1

Gear GB 6.20 6.53 1.51 0.86 0.45 0.23
FPS/RPS 10.1 / 21.2 15.1 / 31.7 4.8 / 10.1 2.8 / 5.9 1.7 / 3.6 0.78 / 1.6

0% Cell Accel GB 0.60 0.56 0.15 0.08 0.04 0.02
Variance FPS/RPS 48.3/101.3 51.4/107.8 46.7/97.9 38.0/79.7 29.8/62.5 20.9/43.8

50% Cell Accel GB 0.61 0.58 0.16 0.08 0.04 0.02
Variance FPS/RPS 46.7/97.9 50.2/105.3 45.3/95.0 37.1/77.8 28.9/60.6 20.1/42.2

100% Cell Accel GB 0.62 0.59 0.16 0.08 0.04 0.02
Variance FPS/RPS 45.0/94.4 48.5/101.7 43.6/91.4 35.9/75.3 27.8/58.3 19.3/40.5

Table 4 presents statistics related to compressing mesh indices us-
ing our parallel mesh re-indexing method for various data sets. We
measure how long our parallel mesh re-indexing strategy takes to com-
plete and compare this to how long it takes to load the dataset from
the disk and how much memory we save. As shown in the table, prior
works needed several hours to re-index on the CPU, while our largest
data sets only take a couple of minutes. Though the Landing Gear data
set is smaller than the Mars Lander data set, the hexahedra represent-
ing the Landing Gear exhibit less vertex reuse than Small Lander, thus
requiring more clusters with fewer elements to guarantee each cluster
references fewer than 216 vertices.

4.2.2 Visual Results

As shown in Table 5, all datasets improve significantly in performance
when adaptive sampling is enabled versus disabled by up to 100× in
the case of the Landing Gear dataset. Compared to a traditional alpha-
composited ray marcher, our results are significantly more noisy per
frame (see the supplemental for what this noise looks like), but as
shown in Figure 9, our adaptive sampled images converge to an unbi-
ased result—unlike adaptive ray marching, as shown in Figure 3—due



Table 3: A comparison of time to cluster elements of the Mars Lander
Dataset using different approaches (KD tree and LBVH implementations
are taken from PBRT v3 [38]).

Clustering Method KD Tree LBVH Hilbert Clusters

100K Elems / Cluster 30+ hrs 16.3 mins 2.5 secs
16 Elems / Cluster NA 23.5 mins 2.5 secs

Table 4: Time required to compress mesh indices using our parallel
mesh reindexing method for various data sets.

Mesh Compression Earth Impact Gear Lander
Number of Clusters 3K 8K 16K 6K
Seconds to Load 2.72 6.31 14.6 10.9
Seconds to Compress 9.76 71.5 216 57.6
Memory Saved (in GB) 0.73 2.80 3.79 5.94

to the physically-based model that Monte Carlo Delta Tracking fol-
lows. Delta tracking also easily extends to volumetric shadows, unlike
alpha-composited raymarching, which requires a shadow ray for every
sample taken from the volume.

Our results show noticeable performance improvements when
transforming our overlapping Hilbert clusters on the fly into non-
overlapping bins, despite the overhead of on-the-fly rasterization.
However, our results show that DDA traversal over our macrocells
performs better than our ray-binning method by 1.4× to 3×. With our
ray binning method, we also have resource contention over ray-tracing
cores, which is not an issue with the DDA traversal approach.

One exception we found was that, for the Landing Gear dataset,
even a 5123 grid of macrocells was insufficient to approximate maxi-
mum density estimates accurately. Compared to even the Mars Lander
dataset, the actual Landing Gear model is incredibly small relative to
the simulation domain. As a result, our on-the-fly ray binning method
can achieve a higher effective adaptive sampling resolution at a frac-
tion of the memory due to the adaptivity of the Hilbert clusters. In this
case, on-the-fly ray binning outperforms DDA traversal, but only for
highly optically dense colormaps where insufficient adaptive sampling
becomes too costly and achieving sufficient resolution with macrocells
requires too much memory.

Ultimately, we believe these results suggest that, for our current
datasets, it is best to rasterize adaptive sampling clusters into an inten-
tionally small set of macrocells. This may seem counterintuitive, as the
unstructured meshes themselves are non-uniform, so in theory, a more
adaptive cluster structure would do better at adaptive sampling; how-
ever, fewer adaptive sampling segments promote larger Delta Tracking
skips forward. As more adaptive sampling segments along the ray are
formed, traversing through too many segments introduces overhead
that starts to dominate rendering time.

5 LIMITATIONS AND FUTURE WORK

Ultimately we are very excited with these results, as we show that low
memory, high-performance unstructured volume rendering is possible
using only relatively simple data transformations. Still, our method
has some limitations that are worth discussing.

One limitation of our approach is that our preprocessing steps to
reduce memory consumption can consume a large amount of memory,
as we require the entire data set to fit within GPU memory to be com-
pressed. Therefore, it might still make sense to compress datasets on
a workstation GPU with more VRAM, then save these results to disk
for post-hoc visualization on a more consumer-friendly card. Alter-
natively, all these compression processes could be done in parallel on
the CPU, which would likely still be much faster than the preprocess-
ing required by prior work. As for future work, we believe there is
still room to further reduce memory consumption without introducing
significant preprocessing time, perhaps by compressing neighboring
tetrahedra pairs.

In terms of rendering, as we discussed before, our ray binning
method is limited in the number of clusters that rays can traverse

Table 5: Comparing rendering performance for alpha-composited ray
marching, non-adaptive delta tracking, and our adaptive approach us-
ing ray bins and DDA. Adaptive methods use 50M Hilbert clusters. Mea-
surements are in frames per second / million rays per second. Note, our
ray marcher does not include volumetric shadows, as shadows cause
the marcher to not return in a reasonable time.

Model Marching∗ Tracking Ray Bins DDA DDA
2K bins 1003 5123

Earth 3.89∗ / 4.1 3.87 / 8.1 7.53 / 15.8 22.4 / 47.0 13.9 / 29.2
Impact 1.13∗ / 1.2 5.05 / 10.6 7.62 / 16.0 11.8 / 24.7 6.87 / 14.4
Gear 0.75∗ / 0.8 0.10 / 0.2 7.26 / 16.0 4.85 / 10.2 9.72 / 20.4
Lander 0.58∗ / 0.6 2.25 / 7.7 11.8 / 24.7 16.3 / 34.2 14.1 / 30.0

through, and it suffers from resource contention with the ray-tracing
cores also used for point location. On the other hand, our cluster-
generated macrocells quickly consume too much memory, as a dou-
bling in spatial resolution results in a cubic number of allocated macro-
cells. To address this, we believe it would be worth exploring alterna-
tive data transformations that transform clusters into a hierarchy of
macrocells, perhaps using the number of clusters that fall within a
coarse macrocell to guide subdividing that macrocell into finer macro-
cells. Then, a hierarchical DDA process could be used instead of a tra-
ditional DDA. Orthogonally, we might also be able to improve render-
ing performance by attempting to execute multiple subsequent point
containment queries within one RT core trace call by leveraging the
multiple clustered elements contained within a single leaf.

Our work focuses on single scattering effects in terms of rendering
quality, as single scattering along a common light direction is relatively
efficient while still conveying depth information. Our approach should
naturally extend to support multiple scattering effects, but how our ray-
binning strategy performs, in this case, warrants further evaluation.

As our method uses a Monte Carlo approach, individual frames pro-
duce noise that must be converged over time. To reduce noise, we
could benefit from a blue noise error distribution, as shown by Wolfe
et al. [52]. We would also likely benefit from a neural network de-
noiser similar to that proposed by Hofmann et al. [18]. Caching light
visibility in finite elements could also be an interesting avenue to ex-
plore, similar to how prior regular grid shadow maps work. Finally,
we believe it would be interesting to explore how our approach might
be used in a distributed setting, e.g., for use in in-situ rendering.

6 CONCLUSION

This work presented a set of simple, efficient, yet highly effective data
transformations to reduce the memory footprint of large unstructured
grids for rendering. To reduce implementation complexity, we sub-
stitute complex bounding volume hierarchy construction for a simple
sort along a Hilbert space-filling curve. Then, we use clusters gener-
ated from this curve to compress the size of point location trees and
mesh indices, all in under a couple of minutes.

We then presented two different methods that transform these clus-
ters into a structure suitable for adaptive sampling during volumet-
ric path tracing: one that rasterizes clusters on the fly into non-
overlapping bins along a ray, and another that rasterizes clusters into
macrocells which can be traversed during runtime using DDA. These
approaches dramatically improve rendering performance, opening the
door to higher quality volumetric renderings, including volumetric
shadows. Using a Monte Carlo path tracing approach over alpha-
compositing, we can amortize sampling expenses over time to improve
interactivity and final image quality.

Ultimately, we hope for the high-performance data transformations
in this work to improve the accessibility of these powerful unstructured
grid formats, which we believe could enable new possibilities for large
data exploration and high-quality visualization.

REFERENCES

[1] Advanced Micro Devices, Inc. RDNA 2 Instruction Set Architecture:
Reference-Guide. Technical report, Advanced Micro Devices, Inc., 2020.



Available at https://developer.amd.com/wp-content/resources
/RDNA2_Shader_ISA_November2020.pdf, Accessed 27 March 2022.

[2] A. Aman, S. Demirci, and U. Güdükbay. Compact tetrahedralization-
based acceleration structures for ray tracing. Journal of Visualization, In
press.

[3] A. Aman, S. Demirci, U. Güdükbay, and I. Wald. Multi-level
tetrahedralization-based accelerator for ray-tracing animated scenes.
Computer Animation and Virtual Worlds, 32(3-4):e2024, 11 pages, 2021.

[4] J. Amanatides and A. Woo. A fast voxel traversal algorithm for ray trac-
ing. In Proceedings of Eurographics, EG ’87, pp. 3–10, 1987.

[5] M. Ament, F. Sadlo, C. Dachsbacher, and D. Weiskopf. Low-pass filtered
volumetric shadows. IEEE Transactions on Visualization and Computer
Graphics, 20(12):2437–2446, 2014.

[6] C. Benthin, I. Wald, S. Woop, and A. T. Áfra. Compressed-leaf bound-
ing volume hierarchies. In Proceedings of the Conference on High-
Performance Graphics, 2018. Article no. 6, 4 pages.

[7] R. T. Biedron, J.-R. Carlson, J. M. Derlaga, P. A. Gnoffo, D. P. Hammond,
W. T. Jones, B. Kleb, E. M. Lee-Rausch, E. J. Nielsen, M. A. Park, et al.
FUN3D Manual: 13.6. National Aeronautics and Space Administration,
Langley Research Center, 2019.

[8] A. R. Butz. Alternative algorithm for Hilbert’s space-filling curve. IEEE
Transactions on Computers, 100(4):424–426, 1971.

[9] H. Dammertz, J. Hanika, and A. Keller. Shallow bounding volume hier-
archies for fast SIMD ray tracing of incoherent rays. Computer Graphics
Forum, 27(4):1225–1233, 2008.

[10] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn, C. R. Salama, and
D. Weiskopf. Real-time volume graphics. In ACM SIGGRAPH Course
Notes, # 29. ACM, New York, NY, 2004.

[11] M. Ernst and G. Greiner. Multi bounding volume hierarchies. In Pro-
ceedings of the IEEE Symposium on Interactive Ray Tracing, RT 08, pp.
35–40, 2008.

[12] D. Ganter and M. Manzke. An analysis of region clustered BVH volume
rendering on GPU. Computer Graphics Forum, 38(8):13–21, 2019.

[13] M. Gittings, R. Weaver, M. Clover, T. Betlach, N. Byrne, R. Coker,
E. Dendy, R. Hueckstaedt, K. New, W. R. Oakes, et al. The RAGE
radiation-hydrodynamic code. Computational Science & Discovery,
1(1):015005, 63 pages, 2008.

[14] P. Gralka, I. Wald, S. Geringer, G. Reina, and T. Ertl. Spatial partitioning
strategies for memory-efficient ray tracing of particles. In Proceedings
of the IEEE 10th Symposium on Large Data Analysis and Visualization,
LDAV 20, pp. 42–52. IEEE, 2020.

[15] H. Gruen. A quick guide to Intel’s ray-tracing hardware. In Game De-
velopers Conference, 2022. Available at https://www.intel.com/co
ntent/www/us/en/events/developer/gdc-march-2022.html,
Accessed: 27 March 2022.

[16] T. Günther, A. Kuhn, and H. Theisel. MCFTLE: Monte Carlo render-
ing of finite-time Lyapunov exponent fields. Computer Graphics Forum,
35(3):381–390, 2016.

[17] L. Ha, J. Krüger, and C. T. Silva. Fast four-way parallel radix sorting on
GPUs. Computer Graphics Forum, 28(8):2368–2378, 2009.

[18] N. Hofmann, J. Martschinke, K. Engel, and M. Stamminger. Neural de-
noising for path tracing of medical volumetric data. ACM Transactions
on Graphics (Proceedings of SIGGRAPH ’20), 3(2):13, 18 pages, 2020.

[19] M. Ishii, M. Fernando, K. Saurabh, B. Khara, B. Ganapathysubramanian,
and H. Sundar. Solving PDEs in space-time: 4D tree-based adaptivity,
mesh-free and matrix-free approaches. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC 19, Article no. 61, 22 pages, 2019.

[20] K. E. Jones. Summit supercomputer simulates how humans will ’brake’
during Mars landing, October 2019. Oak Ridge National Laboratory,
Available at https://www.ornl.gov/news/summit-simulates
-how-humans-will-brake-during-mars-landing, Accessed: 27
March 2021.

[21] R. Kähler, J. Wise, T. Abel, and H.-C. Hege. GPU-assisted raycasting for
cosmological adaptive mesh refinement simulations. In Proceedings of
Volume Graphics, pp. 103–110, 2006.

[22] C. C. Kiris, M. F. Barad, J. A. Housman, E. Sozer, C. Brehm, and
S. Moini-Yekta. The LAVA computational fluid dynamics solver. In
American Institute of Aeronautics and Astronautics (AIAA) SciTech Fo-
rum, 52nd Aerospace Sciences Meeting, pp. 1–43, 2014.

[23] T. Kroes, F. H. Post, and C. P. Botha. Exposure render: An interactive
photo-realistic volume rendering framework. PloS One, 7(7):e38586, 10
pages, 2012.

[24] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp
factorization of the viewing transformation. In Proceedings of the 21st
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’94, pp. 451–458, 1994.

[25] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha.
Fast BVH construction on GPUs. Computer Graphics Forum, 28(2):375–
384, 2009.

[26] P. Ljung. Adaptive sampling in single pass, GPU-based raycasting of
multiresolution volumes. In Proceedings of Volume Graphics, pp. 39–46.
The Eurographics Association, 2006.

[27] J. Martschinke, S. Hartnagel, B. Keinert, K. Engel, and M. Stamminger.
Adaptive temporal sampling for volumetric path tracing of medical data.
Computer Graphics Forum, 38(4):67–76, 2019.

[28] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the
clustering properties of the Hilbert space-filling curve. IEEE Transactions
on Knowledge and Data Engineering, 13(1):124–141, 2001.

[29] D. Moore. Fast Hilbert curve generation, sorting, and range queries. Tech-
nical report, Rice University, Computational and Applied Mathematics,
2008.

[30] P. Moran and D. Ellsworth. Visualization of AMR data with multi-level
dual-mesh interpolation. IEEE Transactions on Visualization and Com-
puter Graphics, 17(12):1862–1871, 2011.

[31] N. Morrical, W. Usher, I. Wald, and V. Pascucci. Efficient space skip-
ping and adaptive sampling of unstructured volumes using hardware ac-
celerated ray tracing. In Proceedings of IEEE Visualization, VIS ’19, pp.
256–260. IEEE, 2019.

[32] N. Morrical, I. Wald, W. Usher, and V. Pascucci. Accelerating unstruc-
tured mesh point location with RT cores. IEEE Transactions on Visual-
ization and Computer Graphics, In press.

[33] J. S. Mueller-Roemer and A. Stork. Gpu-based polynomial finite ele-
ment matrix assembly for simplex meshes. Computer Graphics Forum,
37(7):443–454, 2018.

[34] P. Muigg, M. Hadwiger, H. Doleisch, and E. Groller. Interactive volume
visualization of general polyhedral grids. IEEE Transactions on Visual-
ization and Computer Graphics, 17(12):2115–2124, 2011.

[35] NVIDIA Corp. NVIDIA Ampere GA102 GPU Architecture: Second-
Generation RTX. Technical report, NVIDIA, 2021. Available at https:
//images.nvidia.com/aem-dam/en-zz/Solutions/geforce/am
pere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepap
er-V1.pdf, Accessed: 27 March 2021.

[36] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Lue-
bke, D. McAllister, M. McGuire, K. Morley, A. Robison, et al. Optix:
a general purpose ray tracing engine. ACM Transactions on Graphics,
29(4):1–13, 2010.

[37] J. M. Patchett, F. J. Samsel, K. C. Tsai, G. R. Gisler, D. H. Rogers, G. D.
Abram, and T. L. Turton. Visualization and analysis of threats from as-
teroid ocean impacts. Technical report, Los Alamos National Laboratory,
2016.

[38] M. Pharr, W. Jakob, and G. Humphreys. Physically Based Rendering:
From Theory To Implementation. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 3rd ed., 2016.

[39] B. Rathke, I. Wald, K. Chiu, and C. Brownlee. SIMD parallel ray tracing
of homogeneous polyhedral grids. In Proceedings of the Eurographics
Symposium on Parallel Graphics and Visualization, EGPGV 15, pp. 33–
41, 2015.

[40] A. Sahistan, S. Demirci, N. Morrical, S. Zellmann, A. Aman, I. Wald, and
U. Güdükbay. Ray-traced shell traversal of tetrahedral meshes for direct
volume visualization. In Proceedings of IEEE Visualization Conference,
VIS 21, pp. 91–95, 2021.

[41] P. Shirley and A. Tuchman. A polygonal approximation to direct
scalar volume rendering. ACM Computer Graphics (Proceedings of SIG-
GRAPH ’90), 24(5):6370, 1990.

[42] D. Ströter, J. Mueller-Roemer, A. Stork, and D. Fellner. OLBVH: Octree
Linear Bounding Volume Hierarchy for Volumetric Meshes. The Visual
Computer, 36(10-12):2327–2340, 2020.

[43] L. Szirmay-Kalos, B. Tóth, and M. Magdics. Free path sampling in high
resolution inhomogeneous participating media. Computer Graphics Fo-
rum, 30(1):85–97, 2011.

[44] L. Szirmay-Kalos, B. Tóth, M. Magdics, and B. Csébfalvi. Efficient free
path sampling in inhomogeneous media. In Eurographics (Posters), 2010.

[45] I. Wald. Computing minima and maxima of subarrays. In E. Haines and
T. Akenine-Möller, eds., Ray Tracing Gems: High-Quality and Real-Time
Rendering with DXR and Other APIs, pp. 61–70. Apress, Berkeley, CA,

https://developer.amd.com/wp-content/resources/RDNA2_Shader_ISA_November2020.pdf
https://developer.amd.com/wp-content/resources/RDNA2_Shader_ISA_November2020.pdf
https://www.intel.com/content/www/us/en/events/developer/gdc-march-2022.html
https://www.intel.com/content/www/us/en/events/developer/gdc-march-2022.html
https://www.ornl.gov/news/summit-simulates-how-humans-will-brake-during-mars-landing
https://www.ornl.gov/news/summit-simulates-how-humans-will-brake-during-mars-landing
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf


2019.
[46] I. Wald. A simple, general, and GPU friendly method for computing dual

mesh and iso-surfaces of adaptive mesh refinement (AMR) data. arXiv
preprint arXiv:2004.08475, 2020.

[47] I. Wald. GPGPU-parallel re-indexing of triangle meshes with duplicate-
vertex and unused-vertex removal. arXiv preprint arXiv:2109.09812,
2021.

[48] I. Wald, C. Benthin, and S. Boulos. Getting rid of packets-efficient SIMD
single-ray traversal using multi-branching BVHs. In Proceedings of the
IEEE Symposium on Interactive Ray Tracing, pp. 49–57, 2008.

[49] I. Wald, N. Morrical, and S. Zellmann. A memory efficient encoding for
ray tracing large unstructured data. IEEE Transactions on Visualization
and Computer Graphics, 28(1):583–592, 2021.

[50] I. Wald, S. Zellmann, W. Usher, N. Morrical, U. Lang, and V. Pascucci.

Ray tracing structured AMR data using ExaBricks. IEEE Transactions
on Visualization and Computer Graphics, 27(2):625–634, 2021.

[51] G. H. Weber, H. Childs, and J. S. Meredith. Efficient parallel extraction
of crack-free isosurfaces from adaptive mesh refinement (AMR) data. In
IEEE Symposium on Large Data Analysis and Visualization, LDAV 12,
pp. 31–38. IEEE, 2012.

[52] A. Wolfe, N. Morrical, T. Akenine-Möller, and R. Ramamoorthi. Scalar
spatiotemporal blue noise masks. arXiv preprint arXiv:2112.09629,
2021.

[53] Y. Yue, K. Iwasaki, B.-Y. Chen, Y. Dobashi, and T. Nishita. Unbiased,
adaptive stochastic sampling for rendering inhomogeneous participating
media. ACM Transactions on Graphics, 29(6):177, 8 pages, 2010.


	Introduction
	Related Works
	High-Performance Element Traversal
	Space Skipping and Adaptive Sampling
	Compression

	Method
	Baseline Unstructured Mesh Renderer
	Tree Compression through Hilbert Clusters
	Hilbert Leaf Clusters
	Hilbert Instance Clusters

	Mesh Compression through Re-Indexing
	Adaptive Sampling through Delta Tracking
	Hilbert Adaptive Sampling Clusters
	Option I: Cluster Rasterization into Ray-Centric Bins
	Option II: Cluster Rasterization into a Macrocell Grid
	Adaptive Delta Tracking of Unstructured Data


	Experimental Results
	Datasets
	Evaluation
	Clustering and Compression
	Visual Results


	Limitations and Future Work
	Conclusion

