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Abstract
Volume rendering techniques have increasingly transitioned toward Monte Carlo (MC) methods in recent years due to their
flexibility and robustness. However, their applications in multi-channel rendering have yet to be thoroughly explored. More-
over, color blending between channels in traditional compositing-based rendering often lacks a physical basis, leading to user
confusion. This paper introduces multi-density Woodcock tracking, a simple and flexible approach to multi-channel volume
rendering, leveraging the strengths of MC methods to produce high-fidelity visuals. Our method offers a physically grounded
solution for inter-channel color blending and eliminates the need for arbitrary blending functions. We also propose a uni-
fied blending modality by generalizing Woodcock’s distance tracking method, facilitating seamless integration of alternative
blending functions from prior works. Through evaluation across diverse datasets, we demonstrate that our approach maintains
real-time interactivity while achieving high-quality visuals by accumulating frames over time.

CCS Concepts
• Computing methodologies → Ray tracing; Volumetric models; • Human-centered computing → Scientific visualization;

1. Introduction

This supplemental document goes into some details and results we
discarded from the main paper due to negative results, insignifi-
cance, or lack of space. However, we still see merit in communi-
cating what has not been successful. Moreover, we re-report some
of the visual results as larger and more detailed images.

2. Method #3: One DDA Traversal over a Cumulative
Majorant Grid

We briefly mention this method in the main paper in the results
section. However, the method itself and its results are not present
in the paper due to being less impactful and requiring an additional
step of processing.

After method #2, another potential improvement we identify is
to reduce all N majorant grid data to a single one. We propose the
usage of a cumulative majorant buffer to reduce multiple accesses
to memory. This process ultimately tracks a single channel instead
of N different ones, potentially identifying a sample faster.

L(x,ω) =
∫ d

t=0
p(t) [Preal(x)Le(xt ,ω)+Pnull(x)L(xt ,ω)]dt (1)

L(x,ω)=
∫ d

t=0
p(t)

[
N

∑
n=1

(P(θn,x)Le(xt ,ω,θn))+Pnull(x)L(xt ,ω)

]
dt

(2)

Just like method #1 and method #2, this method approximates
the Equation 2; however, we do not differentiate between differ-
ent channels’ collision probabilities (Pn) until we encounter a real
collision. So we essentially revert to formulation in Equation 1,
but within each occurrence of a real collision, we use Pn to choose
which sample to take (or not to take any, i.e. null-collision).

Unlike other techniques mentioned in the paper, this method uses
a single majorant grid, where for each macrocell, a sum of N ma-
jorants is stored as a cumulative majorant. However, calculating
and storing min and max value pairs for each macrocell is still
required as we recalculate majorants based on these values. This
method mostly coincides with the technique presented in the over-
lapping volumes chapter of Fong et al.’s Production Volume Ren-
dering course [FWKH17].

Rendering with this method is quite similar to using a single
channel and utilizing a regular Woodcock tracker. We iterate over
the cumulative majorant grid with DDA traversal and take Wood-
cock steps within the cells using the majorant value, mi, for the
given cell at index i. The only significant difference to standard
Woodcock tracking occurs during the sampling stage, where we
test for true collisions by getting the respective scalar values for
each of the N channels. These scalars are used to obtain samples’
respective opacities (densities) via transfer function lookups. Then,
we importance-sample these channels based on their densities. If
all of the samples are rejected, it is a null collision, but if one is ac-
cepted, we return that sample’s color value and stop the traversal.
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Figure 1: An illustration of the Woodcock tracking process with one
DDA traversal over a cumulative majorant grid from a perspective
of one ray: A DDA traversal is initiated for the cumulative majorant
grid, and between each DDA step, Woodcock steps are taken where
null collisions are discarded. These processes are repeated until a
sample is found. The sample is accepted, and the mapped color
from the transfer function is returned.

Please also refer to the Figure 1 for an illustration and Listing 1 for
a kernel implementation.

Listing 1: Multi-channel Woodcock tracking using a DDA traversal
over the cumulative majorant grid

void cumulativeDDAMultiChannelWoodcock(
Ray ray, HitRecord& hit, int N){

DDA dda(ray);
int cellID = dda.curCell();
do{//DDA traversal
float t = dda.cellEntryT();
float cMaj = majorants[cellID];
while(true){//Woodcock steps in the cell

t += woodcockStep(cMaj);
if(!dda.InCurCell(t))//bounds check

break;//go to the next cell

float colThreshold = randFloat()*cMaj;
//Pick a sample w.r.t density
for(int n = 0; n < N; n++){

float scalar = volumeAt(ray.org
+ ray.dir * t, n);

float4 sample = trFunc(scalar, n);
//null collision check for nth channel
if( sample.w > colThreshold){
//accept this channel:
//but discard the "w"
hit.color = float3(sample);
hit.t= t;
dda.stop();//stop the traversal
break;

}
colThreshold -= sample.w;

}// no channel was selected: null collision
}cellID = dda.nextCell();

}while(!dda.shouldStop());
}

3. Additional Results

3.1. Performance and Memory Consumption of Method #3

In this section, we re-report some of our benchmarks with method
#3. We also report a memory consumption comparison using
method #3.

The Figure 2 shows that method #3 is the least performant
method among our three implementations of multi-density Wood-
cock tracking. It can be observed that method #3 reaches its peak
performance before the other two methods. In scenarios where
traversal depth is much shallower, like the certain angles to Ze-
brafish or Hurricane, we observe this method to outperform our
other implementations for macrocell size is 13. However, this case
is equivalent to not using a macrocell grid, i.e., DDA traversal over
the original grid data.

We can also look at the Table 1 for a comparison of the mem-
ory consumption of our methods at their peak performance. As
stated before, method #3 reaches peak performance on a much finer
macrocell grid compared to method #1 and #2. Due to that fact, this
method also consumes more memory while not keeping up with the
performance of the other approaches.

In the Figure 3, we observe that even method #3 is generally
faster than the ray marching algorithm even while rendering vol-
umetric shadows. However, it also demonstrates poor scaling with
the increasing number of channels. As the data structure is a re-
duced approximation, it stores even less detailed information about
the density trend of the volume. This reduction makes the cumu-
lative majorant grid a less adaptive data structure, diminishing the
benefits gained from the adaptive stepping of Woodcock tracking.
In other words, on average, method #3 behaves much closer to
its worst-case of O(N) as the local cumulative majorant is tested
against each channel until the threshold is exceeded. In contrast to
method #3, our other two approaches prune the redundant traversals
much more efficiently, leveraging the occlusion between channels
to obtain better average complexity.

3.2. Quality vs. Performance Addendum

The main paper’s “similar quality” vs. “similar performance” ex-
periments only included two of our four datasets due to lack of
space. This document presents the plots and images generated for
three of our large datasets as larger figures. The additional results
depicted in Figure 6 support our findings from the original paper
where we show Figure 4 and Figure 5.

The Figure 6 draws a similar speed to quality trade-off to Fig-
ure 4. The dataset has many dense (active) cells in the viewing di-
rection; therefore, both rendering algorithms quickly complete their
traversal and return. For this reason, the inherent space-skipping
benefits of a Woodcock tracker are undercut here. However, even
if one of the channels were to occupy near-empty cells before the
dense cells in the viewing direction, we would have ended up with
trade-offs similar to Figure 5. It is common for scientific volumetric
data to contain empty cells. For example, CT scans and simulation
data often generate boundary cells with uniform values that encase
the meaningful features of the dataset.
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Figure 2: The plots of average rendering times in seconds (lower is better) against increasing macrocell sizes (# of cells within a macrocell)
for four datasets. We compare our two methods: method #1, labeled as “N-DDA MDWT (Multi-density Woodcock Tracking),” method #2,
labeled as “1-DDA MDWT,” and method #3, labeled as “Cuml. Maj”. Solid lines are direct volume rendering (DVR), while dashed lines
represent DVR with shadows.

Table 1: Theoretical memory consumption for our datasets for the peak performance configurations. Method #1 and #2 use multiple majorant
buffers, and method #3 uses a cumulative majorant buffer.

Datasets
# of

Chan.
Majorant Config. at Peak Perf.

Data Structure Sizes (MiB)

Base Macrocells Majorants Total:

NYX 4
Multiple (4×128×128×128)

2048.0
64.0 32.0 2144.0

Cumulative(1×256×256×256) 128.0 64.0 2240.0

Hurricane 4
Multiple (4×125×125×25)

381.47
11.92 5.96 399.35

Cumulative (1×250×250×50) 23.84 11.92 417.23

Miranda 4
Multiple (4×96×96×64)

576.0
18.0 9.0 603.0

Cumulative (1×192×192×128) 36.0 18.0 630.0

Zebrafish 3
Multiple (3×80×80×15)

567.19
2.19 1.09 570.46

Cumulative (1×160×160×30) 5.86 2.92 575.97

N-DDA MDWT (ours) N-DDA MDWT(ours) w/ shdw 1-DDA MDWT (ours) 1-DDA MDWT (ours) w/ shdw Cuml. Maj Cuml. Maj w/ shdw Ray Marcher-Mix
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Figure 3: The average rendering times in milliseconds (lower is better) versus the increasing number of channels across four datasets. For
each dataset, we present the rendering of individual channels on the left, all channels combined with multi-channel Woodcock tracking on
the middle, and a line plot on the right. The line plots compare “N-DDA MDWT (Multi-density Woodcock Tracking),” “1-DDA MDWT”
method, “Cuml. Maj” method (#3), and "Ray Marcher-Mix," a ray marcher using mix blending. Dashed lines represent the performance of
our methods with volumetric shadows, while solid lines represent others.
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3.3. Visual Comparisons for Blending Functions Addendum

We include another omitted result from the paper along with the al-
ready reported results from the “Visual Comparisons for Blending
Functions” section of the main paper. Table 2 reports visual simi-
larity of an image-space method, two not physically based blending
functions, to our physically-based density blending function, which
can be considered ground-truth in this case. In addition to provid-
ing slightly larger images, we also include the Miranda dataset as a
row in this supplementary table.

Overall, blending functions behave almost consistently with
other results we have (most akin to the Hurricane dataset). For
equal mix and max opacity the most difference reported comes
from where individual channels overlap with each other.
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Table 2: Visual comparisons of inter-channel blending functions over test datasets: Direct volume renderings using Emission+Absorption
model with identical parameters for various blending functions, accompanied by heat map images depicting the difference to our physically
motivated density-based blending function using FLIP metric [ANA21]. The overall mean difference to density-based blending is also
reported under the heat maps.

Dataset
Blending

Post-Render
Composite

Equal Mix Max Opacity
Density-Based

(ours)

N
Y

X

Direct
Volume

Rendering

Difference
to ours

0

20

40

60

80

100

%
 D

iff
er

en
ce

Mean Difference 47% 21% 13%

H
ur

ri
ca

ne

Direct
Volume

Rendering

Difference
to ours

0

20

40

60

80

100

%
 D

iff
er

en
ce

Mean Difference 77% 33% 24%

M
ir

an
da

Direct
Volume

Rendering

Difference
to ours

0

20

40

60

80

100

%
 D

iff
er

en
ce

Mean Difference 74% 29% 20%

Z
eb

ra
fis

h

Direct
Volume

Rendering

Difference
to ours

0

20

40

60

80

100

%
 D

iff
er

en
ce

Mean Difference 34% 6% 6%

submitted to Eurographics Symposium on Parallel Graphics and Visualization (2025)



6 of 8 A. Sahistan et al. / Supplementary Material for Multi-Density Woodcock Tracking
Si

m
ila

r
Q

ua
lit

y

1 2 4 6 8 10 12 14 16 18 20
Sample per pixel

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

Av
g.

 R
en

de
rin

g 
tim

e 
(m

illi
se

co
nd

s)

Similar quality

NYX

Si
m

ila
r

Pe
rf

or
m

an
ce

0.0
07

7
0.0

07
0
0.0

06
2
0.0

05
5
0.0

04
7
0.0

04
0
0.0

03
2
0.0

02
5
0.0

01
7
0.0

01
0

Sample interval

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
g.

 R
en

de
rin

g 
tim

e 
(m

illi
se

co
nd

s)

similar performance

NYX

Figure 4: Similar quality (top row) vs. similar performance (bottom row) experiments for the NYX dataset. The similar quality images
display slices rendered with our Multi-Density Woodcock Tracking (MDWT) at increasing samples per pixel (spp), while the bottom-right
half shows the ray marcher using mix blending with half of the minimum cell size as the sampling interval (Nyquist rate). The similar
performance images show slices rendered with the ray marcher and mix blending (RM-Mix) for increasing sampling intervals, with the
bottom-right half showing the same scene rendered by MDWT at 1 spp. The rendering time for each slice is indicated on the left side of each
image, and each image is accompanied by a line plot of the average rendering times in milliseconds (lower is better).
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Figure 5: Similar quality (top row) vs. similar performance (bottom row) experiments for the Miranda dataset. The similar quality images
display slices rendered with our Multi-Density Woodcock Tracking (MDWT) at increasing samples per pixel (spp), while the bottom-right
half shows the ray marcher using mix blending with half of the minimum cell size as the sampling interval (Nyquist rate). The similar
performance images show slices rendered with the ray marcher and mix blending (RM-Mix) for increasing sampling intervals, with the
bottom-right half showing the same scene rendered by MDWT at 1 spp. The rendering time for each slice is indicated on the left side of each
image, and each image is accompanied by a line plot of the average rendering times in milliseconds (lower is better).
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Figure 6: Similar quality (top row) vs. similar performance (bottom row) experiments for the Hurricane dataset. The similar quality images
display slices rendered with our Multi-Density Woodcock Tracking (MDWT) at increasing samples per pixel (spp), while the bottom-right
half shows the ray marcher using mix blending with half of the minimum cell size as the sampling interval (Nyquist rate). The similar
performance images show slices rendered with the ray marcher and mix blending (RM-Mix) for increasing sampling intervals, with the
bottom-right half showing the same scene rendered by MDWT at 1 spp. The rendering time for each slice is indicated on the left side of each
image, and each image is accompanied by a line plot of the average rendering times in milliseconds (lower is better).
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