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Figure 1: Multi-channel volume rendering of the Zebrafish dataset’s three channels (640×640×121): (a) Converged rendering at 2560×1440 resolution
with 100 FPS using our multi-density Woodcock tracking. (b) A crop of the white rectangle in (a). For the same crop, (c), (d), and (e) display only
the first, second, and third channels, respectively. (f) The added linear cost of sampling all three channels for every ray and (g) the amortized cost
of our method over time per ray heatmap.

Abstract
Volume rendering techniques for scientific visualization have increasingly transitioned toward Monte Carlo (MC) methods in recent
years due to their flexibility and robustness. However, their application in multi-channel visualization remains underexplored. Traditional
compositing-based approaches often employ arbitrary color blending functions, which lack a physical basis and can obscure data
interpretation. We introduce multi-density Woodcock tracking, a simple and flexible extension of Woodcock tracking for multi-channel
volume rendering that leverages the strengths of Monte Carlo methods to generate high-fidelity visuals. Our method offers a physically
grounded solution for inter-channel color blending and eliminates the need for arbitrary blending functions. We also propose a unified
blending modality by generalizing Woodcock’s distance tracking method, facilitating seamless integration of alternative blending functions
from prior works. Through evaluation across diverse datasets, we demonstrate that our approach maintains real-time interactivity while
achieving high-quality visuals by accumulating frames over time.

CCS Concepts
• Computing methodologies → Ray tracing; Volumetric models; • Human-centered computing → Scientific visualization;

1. Introduction

From simulations to microscopy images, visualization of scientific data
is essential for domain scientists to draw informed conclusions quickly
and accurately. Modern scientific data are typically multifaceted, with
each aspect represented as a distinct channel (field) corresponding to a
specific attribute (velocity, temperature, pressure, etc.) of the phenomena
within a volume. Understanding the causality and relationships between
these attributes requires examining them not only in isolation but also in
relation to each other. Multi-channel visualization offers a viable solution,
providing a practical approach for observing the intricate connections
among different fields in the data.

Volume rendering techniques have evolved from analytical compositing-

based methods—such as slicers [EKE01] and ray marching [TT84]—to
Monte Carlo-based tracking solutions. Unlike compositing methods,
which combine multiple partial samples via opacity [IKLH04b], tracking
approaches interpret opacity as a physical density, allowing for a single
collision per ray. A prominent technique in this domain is Woodcock
tracking [WMPT65]. These Monte Carlo methods are generally easy
to implement and provide greater interactivity and flexibility, but their ap-
plication to multi-channel scientific volumes remains largely unexplored.

Multi-channel volume rendering presents challenges in color blending
across multiple fields and colormaps. Unlike single-channel methods,
rendering N fields involves N opacities that can sum to over 100%,
complicating color contributions. Standard approaches normalize opacities
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or blend using the maximum opacity, compositing over accumulated
color. However, these methods can cause color discontinuities and
out-of-colormap colors and increase the computational cost (Θ(N)) as
channels grow. Additionally, user interaction becomes more complex with
more channels [RS04,Lia08], making it challenging to design blending
operators that ensure proper depth ordering and intuitive usability [Kim11].

Despite these challenges and considering their popularity, blending
functions from previous works continue to offer practical solutions
in specific contexts. For example, disregarding occlusion can be
helpful [CS99] when spatial relationships are nonessential. Likewise,
observing mixed colors can hint at correlations when using primary-color
transfer functions [RS04, Lia08]. To our knowledge, a formal way to
combine these techniques to provide a unified blending modality does
not exist. Formulating this modality becomes particularly counterintuitive
when compositing-based rendering is involved.

In this work, following a similar idea to analog decomposition track-
ing [KHLN17], we extend Woodcock tracking to multi-channel scientific
visualization (sci-vis), addressing the fundamental challenges of rendering
multi-channel data. Our algorithm employs a Monte Carlo process to iden-
tify the closest sample by evaluating each channel’s density along the ray,
thereby avoiding the limitations of previous methods that rely on accumu-
lating numerous partial samples. As illustrated in Figure 1, our approach
enables accurate and efficient visualization of arbitrary combinations of N
channels across a volume. The contributions of this paper are as follows:

• Two generalizations of the Woodcock tracking traversal to
multi-channel volumes:

– an easy-to-implement serial method that traverses and collects
samples for N channels one at a time,

– and an optimized method that prunes the redundant traversals by
traversing N channels in a single traversal.

• A density-driven, physically based inter-channel blending function
that avoids the pitfalls of prior color blending functions.

• A unified rendering modality within the Woodcock tracking that
allows substituting inter-channel color blending functions from prior
works—e.g., max opacity selection and weighted mixing.

2. Related Work

2.1. Volume Rendering

Earlier works in volume rendering utilize slicers [CCF94,CN93,EKE01,
LKC05] where a 3D texture of view-aligned slices are re-sampled to
approximate the volume rendering equation. Although slicers are actively
used in multi-channel volume rendering, single-channel methods largely
abandoned slicers with the advent of GPGPU frameworks like CUDA
and OpenCL.

Nowadays, the standard way to render volumes is ray marching-based
methods [PH89, KW03, RGW∗03, HSS∗05]. These methods produce
high-quality, noise-free images by analytically approximating the volume
rendering equation via accumulated contributions from multiple partial
samples along a ray’s path. However, when undersampling, marchers
introduce bias and artifacts even with jittered sampling [RSK08]. Ad-
ditionally, incorporating secondary effects such as volumetric shadows or
gradient shading dramatically hinders the rendering performance as these
mandate more sampling for each initial view-aligned sample [SDM∗21].
To combat these costs, prior works have proposed space skipping and
adaptive sampling strategies [LLY06, MUWP19, ME11, WZU∗21].
Specifically for shadows, shadow maps offer a solution for achieving more

interactive rates, but they occupy extra memory and require recomputation
whenever the transfer function or lighting changes [IKLH04a].

Tracking-based Monte Carlo estimators have gained traction in sci-
entific and cinematic rendering [FWKH17]. Despite introducing variance
(noise) and needing to converge over multiple samples, they offer advan-
tages such as efficient handling of secondary effects like shadows due to
their lower asymptotic complexity. They also enable artifact-free adaptive
sampling [YIC∗10, SKTM11]. Szirmay-Kalos et al. further improve
efficiency by using a 3D digital differential analyzer (DDA) to adjust
sampling rates based on local density estimates stored in a coarser grid.

Woodcock (delta) tracking has become popular in recent
works [GKT16, MHK∗19, HMES20, MZS∗23], where volumes
are homogenized using fictitious particles based on maximal density.
Morrical et al. introduce adaptive Woodcock tracking for compressed
clusters of unstructured meshes [MSG∗23]. Zellmann et al. explore
data structures and algorithms to efficiently path trace Adaptive Mesh
Refinement volumes using Woodcock tracking [ZWS∗24].

The use of tracking methods for rendering multiple overlapping vol-
umes has been explored in prior work [NSJ14,KHLN17], predominantly
within cinematic rendering. Novak et al.’s residual ratio tracking [NSJ14]
reduces variance by splitting the volume into homogeneous control and
heterogeneous residual volumes. Kutz et al.’s spectral and decomposition
tracking [KHLN17] introduces the idea of selecting the minimum distance
among free-flight samples from multiple volumes, a technique shown to
fit within the integral framework of Galtier et al. [GBC∗13] and later ex-
panded further [GMH∗19]. In contrast, we utilize these ideas for multiple
overlapping heterogeneous volumes within the sci-vis applications.

2.2. Multi-Channel Visualization

The multi-channel visualization has two orthogonal problems: user
interface [MJW∗13] and rendering [CR08]. In this paper, we mainly
tackle the rendering aspect while allowing the usage of traditional transfer
functions. Nevertheless, the solutions to these orthogonal problems can
sometimes be intertwined [KZX∗23]. The thesis by Kim [Kim11] offers
many insights into the multi-channel visualization domain.

Given the tedious nature of setting a precise transfer function for all
the channels, Pan et al.’s work [PLL∗24] concentrates on design galleries
where users can select images resembling their target image to construct
a transfer function implicitly. Likewise, Kim et al. [KSC∗10a,KSC∗10b]
employ dimensionality reduction schemes to aid in the design of
multidimensional transfer functions. Our work is compatible with these
transfer function helper frameworks, given that their neural networks
are trained with our renderer.

Khlebnikov et al. [KKSS13] propose a random-phase Gabor
noise-driven cell-space redistribution pattern and filtering scheme for
simultaneous multi-channel display. However, this technique can blur
details or create counterintuitive renderings, particularly for untrained
observers. Herzberger et al. [HHK∗23] introduce the residency Octree
for out-of-core mixed resolution in web-based multi-channel rendering,
focusing on efficient data streaming with a ray-guided volume renderer
from Crassin et al. [CNLE09].

FluoRender [WOCH09, WOCH12, WOH∗17] is one of the most
prominent tools for multi-channel visualization, using slicer-based
rendering while enabling a variety of user interactions. Slicers render one
slice at a time, loading only necessary transfer functions and channels,
effectively serializing the rendering and reducing texture memory and
VRAM usage. FluoRender users can select, highlight, or segment
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structures using brushing tools with morphological diffusion, aiding in
exploring correlations. To avoid visual clutter from overlapping fields,
Fluorender offers non-physically based compositing modes, such as
post-render compositing and weight-based color mixing with depth
correction. Given Fluorender’s broad appeal, we incorporate some of
these modes into Woodcock tracking for our experiments.

Opacity-based rendering often relies on physically inaccurate models
and struggles with opacity mixing. Previous efforts [CS99,RS04,Lia08]
have addressed some issues with inter-channel color blending. We
propose adopting density-based approaches, such as Woodcock
tracking, to overcome to tackle these issues in a physically-motivated
manner. Density-based approaches shift color blending to screen space,
accumulating one sample at a time across frames. Our approach also
supports integrating other blending techniques from prior works.

3. Woodcock Tracking Background

In Woodcock tracking [WMPT65], photon and particle behaviors are
simulated through a Monte Carlo process. Generalizing the rendering equa-
tion [KVH84] for volumes and simplifying for the emission/absorption
model gives us the simplified Volume Rendering Equation (VRE):

L(x,ω)=
∫ d

t=0
T(t)σa(x)Le(xt ,ω)dt, (1)

In Equation 1, radiance, L(x,ω), at point x looking in the direction
of ω is calculated by taking the integral of transmittance T(t) times the
absorption coefficient σa(x) and emitted radiance Le(xt ,ω) between x
and xt . In the sci-vis context, Le is determined by the colormap of the
transfer function that maps a scalar number to an RGB value, and σa(x)
is influenced by the user-defined alpha component of the transfer function
for the same scalar value.

The transmittance for homogeneous volumes follows the Beer-Lambert
law where σt is constant:

T(t)=exp(−σtt) (2)
To simulate photon-particle collisions, we calculate a photon’s free-flight
distance until it hits a particle, denoted as t′. This calculation involves
computing the probability density function (PDF) of T(t), denoted as
p(t), and importance sampling p(t) using ξ as a random number:

p(t)=σtexp(−σtt), t′=
−ln(1−ξ)

σt
(3)

To apply this formulation to heterogeneous volumes, we can imagine the
heterogeneous volume homogenized by fictitious null particles. The ratio,
and thus the probability, of encountering these null particles is dictated
by the maximum density of the volume or subvolume. This coefficient,
known as the majorant, is denoted as σ̄ and can be substituted for σt
in Equation 3.

Finally, the VRE needs to be adjusted to handle null collisions
and normalize coefficients, essentially turning them into probabilities.
Therefore we define the probability of hitting a real particle, Preal(x) as
the ratio of density at point x to maximum density (majorant). Therefore,
the remainder of the probabilities is the null collision, Pnull(x), probability.

Preal(x)=
σa(x)

σ̄
, Pnull(x)=

σ̄−σa(x)
σ̄

, (4)

So we end up with the final form of Equation 1:

L(x,ω)=
∫ d

t=0
p(t)[Preal(x)Le(xt ,ω)+Pnull(x)L(xt ,ω)]dt (5)

This version of the VRE selects one of two paths when computing
incoming color at x from direction ω: (i) With probability Preal the
scalar field is sampled, assigning Le(xt ,ω) a color via transfer function

fcm). (ii) With probability Pnull, the function L(x,ω) is invoked again
(recursive) from a further point xt . The integral relies on p(t), a stepping
function. Since this approach follows a Monte Carlo process, we use its
importance-sampled version, the free-flight distance t′, from Equation 3
to determine the stepping distance.

While the majorant σ̄ is presented as a global constant, subdividing
the volume into regions with local majorants σ̄i reduces null collisions
by better constraining null particles, improving performance. Instead of
a single global majorant, we use a grid of σ̄is.

We use a similar notation to [FWKH17] and point the readers
to [PJH23] for further details of these derivations.

4. Method

As the VRE is defined for single channel volumes in Equation 5, we intro-
duce our physically motivated formulation to render and blend N fields,
θn | n∈N ∧ n≤N, as a natural extension of Woodcock tracking in Subsec-
tion 4.1. Additionally, we propose another extension to Equation 5 to for-
mally incorporate blending functions from prior works in Subsection 4.2.

We detail how to set up a Woodcock renderer that uses multiple densi-
ties in Subsection 4.3. Then, in Subsection 4.4 and Subsection 4.5, we ex-
plore the implementation space for the method proposed in Subsection 4.1.

4.1. Multi-density Woodcock Tracking

We can devise a physically based and convenient Woodcock tracking
method by treating N fields as multiple densities. Doing so, we naturally
extend the physically based Woodcock tracking to multiple channels.

We generalize the formulation Equation 5 to operate over multiple fields.
We substitute the PrealLe(xt ,ω) term with the sum of the multiplication be-
tween probabilities P(θn) and N radiances where θn is the n-th field of the
volume to end up with a formulation for multi-density Woodcock tracking:

L(x,ω)=
∫ d

t=0
p(t)

[
N

∑
n=1

(P(θn,x)Le(xt ,ω,θn))+Pnull(x)L(xt ,ω)

]
dt

(6)
The modified probabilities are as follows:

P(θn,x)=
σa(x,θn)

σ̄n
, Pnull(x)=

N

∑
n=1

(1−σa(x,θn)

σ̄n
) (7)

Where function σa yields the density for channel θn at point x, i.e.,
σa(x,θn) = θn(x). We keep the property of probabilities adding up to
1 from Equation 4, so ∑

N
n=1P(θn)+Pnull =1 for any point x.

One way to think about this formulation is that we are testing for a
real collision (absorption) for N volumes. The remaining possibility is
the null collision probability.

Mapping the set of N opacities to physical densities, we turn the process
into a Monte Carlo process that blends the colors through accumulation
in screen-space. Unlike prior blending/sampling strategies, our approach
ensures physical correctness without arbitrary normalizations. Therefore,
Equation 6 implicitly defines a distinct blending function. Figure 3
illustrates our density-based blending function applied to three overlapping
volumes, each mapped to a flat primary-colored transfer function.

ours
(

, ,
)
=

Figure 3: Three single-channel renderings are shown from left to right:
Red, green, and blue cube volumes with linearly decreasing densities
on the X, -X, and -Y axes, respectively. Using our formulation from
Equation 6, their multi-channel rendering is given on the right-most image.
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Post-render compositing Mix w/ equal weights Density-based (ours) D.-based (ours) w/ shdws

Depth Ordering ✗ ✓ ✓ ✓

Phys.-B. Colors ✗ ✗ ✓ ✓

Figure 2: Visual comparison of various blending modes over a close-up of Miranda dataset with four channels (left-to-right): Compositing after rendering,
mix function from Equation 10, our density-based blending function from Equation 6, and our blending mode with volumetric shadows. They are evaluated
on their ability to achieve correct depth ordering and physically based color blending.

4.2. Generalization to Blending Functions in Woodcock

Previously defined methods for blending N channels are often exploratory
rather than physically based. Researchers have introduced various
blending functions, such as maximum opacity selection and user-weighted
mixing [RS04,Lia08], which have been effective in practice. While these
blending techniques are not physically motivated, they offer valuable
heuristics and have an established user base accustomed to their results.
This section demonstrates how these methods can be integrated within
a Woodcock tracker, leading to alternative formulations.

To allow the substitution of other blending functions, we go back
to Equation 5, and we exploit the fact that these blending functions
serve the purpose of reducing N colors and N opacities to one color and
opacity pair. By allowing redefinition of σa(x,θn), and Le(x,ω,θn), we
can specialize to other blending functions for a Woodcock tracker. Note
that, since N fields co-exist in the same volume, the majorant, σ̂ , is now
the sum of N maximum densities.

The max opacity sample selection (or max) always chooses the sample
with the highest opacity at the given sample point. Thefore, the maximum
opacity selection can be defined as:

σa(x,θn)=

{
θn(x), if θn(x)>θi(x) | ∀i∈N ∧ i<N
0, otherwise.

(8)

Le(x,ω,θn)=

{
fcm(θn(x)), if θn(x)>θi(x) | ∀i∈N ∧ i<N
0, otherwise.

(9)

As max deterministically picks the same sample, overlapping
semitransparent regions can get filtered out by one more dense region.
Despite allowing some regions to steal visibility from others, it merits
intuitive usage. Figure 4 shows a visualization of max blending.

max
(

, ,
)
=

Figure 4: Visualization of max blending function from Equation 8 using
the same three fields from Figure 3.

Mixing with user-defined weights (i.e., mix) allows users to adjust
weights for each channel to allow color mixing among them. Using
weights, wn, mix blending can be achieved by using the same σa(x,θn)
as Equation 8 and re-defining the radiance as:

Le(x,ω,θn,wn)=
∑

N
n=1 fcm(θn(x))·θn(x)·wn

max(θ1(x),θ2(x)···θN(x))
, where

N

∑
n=1

(wn)=1

(10)

Although the user interface complexity for the mix blending scales

linearly with the number of channels, it can show correlations with mixed
colors. Please see Figure 5 for a rendering with the mix function.

mix
(

, ,
)
=

Figure 5: Visualization of mix blending function from Equation 10 using
equal weights and the same three fields from Figure 3.

Another downside of blending modes like mix and max is that
they require finding a maximum among N samples as a normalization
factor, which has the algorithmic complexity of Θ(N). In contrast, our
density-based blending function from Subsection 4.1 does not require
a normalization factor (e.g., maximum opacity selection) that entails a
linear cost. Instead, it probabilistically selects one sample among channels,
resulting in better average algorithmic complexity.

We present definitions for some well-known functions but this approach
is not constrained by them, and using the open-ended formulation
we provided in this section, users can invent new blending functions.
σa(x,θn) controls collision possibilities, and it can be parameterized to
pick something other than the maximum opacity sample, or Le(x,ω,θn)
can define a nonlinear combination of N channels.

There are also blending modalities completely disassociated from the
rendering process that occurs in the image space, such as compositing
images after rendering each channel (post-render compositing).
Post-render compositing offers an occlusion-free view, but it loses the
depth information. It is commonly used in tools like Fluorender.

Figure 2 illustrates some of these blending functions’ benefits and
visual distinctions on a real dataset.

4.3. Setup for the Woodcock Renderer

We developed a base renderer in CUDA that stores N structured grids
of scalars in 3D textures, each with dimensions k×l×m. Each loaded
channel utilizes their separate transfer function to determine their
user-defined densities and colors. The renderer builds a coarser k′×l′×m′

macrocell grid. Within each macrocell, scalar ranges for each channel
(a min and max pair) are stored, resulting in a memory consumption of
N×k′×l′×m′×2 floating-point values per channel. The construction
of the macrocells can be considered a rasterization process, where the
original grid of scalars is projected onto a grid with reduced resolution.

Every time a transfer function changes, we calculate that channel’s
majorants for each macrocell. The process involves determining the
maximum opacity associated with the scalar value range of each
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macrocell for the given channel. Therefore, for each macrocell, we iterate
between the min and the max scalar values, fetching the opacity mapped
to them from the respective channel’s transfer function. The majorant
for that macrocell is the maximum opacity found after the loop. We run
these calculations using a CUDA kernel in parallel. The process yields
a majorant grid with the exact resolution as the macrocell grid. Therefore,
we store k′×l′×m′×N floating-point numbers for the majorants.

Listing 1: Implementation of Woodcock stepping function

float woodcockStep(float majorant){
return -(log(1.0f - randFloat()) / majorant);}

Using a 3D Digital Differential Analyzer (DDA) traversal, we employ
ray tracing through the majorant grids. Woodcock steps are taken as
shown in Equation 3 (calculated with Listing 1) within each macrocell
based on the active majorants. Upon identifying a collision at point p,
we sample the 3D textures to retrieve the relevant channels’ scalar value
at p. The scalar is given to the respective channel’s transfer function (TF)
to get the color and opacity. We interpret the linear RGB returned from
TF as an emissive color. We employ rejection sampling using the null
collision probability in Equation 4 to see if the sample is accepted (see
Listing 2). Upon acceptance, we halt the traversal and return the color
value (discarding the “w” component). We utilize an accumulation buffer
to allow convergence over multiple frames.

Listing 2: Implementation of rejection scheme via null collisions

bool nullCollision(float majorant, float density){
return (density < randFloat() * majorant);}

We have identified several meaningful approaches to achieving this.
They differ in implementation, however they ultimately converge to the
same image when using the same parameters.

4.4. Method #1: N-DDA Traversals over Majorant Grids

One obvious way to approximate Equation 6 is by simply applying
Woodcock tracking for each channel as separate volumes and choosing
the closest sample. This approach, though not the most computationally
efficient, allows for serializing the rendering of individual channels by
loading volumes and their corresponding transfer functions one at a
time to mitigate memory constraints. It can be particularly useful for an
out-of-core implementation. Moreover, this offers a good baseline for
our comparisons and can be viewed as an initial step for understanding
the multi-channel Woodcock tracking.

For this approach, we build majorant grids for each channel where
the maximum density for a group of cells contained within a macrocell
is stored. The majorants are recalculated every time a TF is edited.

The rendering process, illustrated in Figure 6, involves applying
Woodcock tracking to all N channels using their respective majorant
grids. Specifically, for a given channel C0, we perform a DDA traversal
over the majorant grid M0. Within each cell of M0, Woodcock steps are
taken using the majorant m0,i, where i corresponds to the 1D index of
the current cell of M0, for the ray position. The DDA traversal and steps
within are repeated until we encounter a real collision. Upon hitting a
particle, we record the distance (t0) and color for C0. This entire procedure
is then repeated for C1,C2, . . . , CN , utilizing their respective majorant
grids M1,M2, . . . , MN . Once we complete iterations through all channels,
we select the closest sample — min(t0,t1,. . . ,tn,. . . ,tN). One obvious
optimization we apply to this approach is early termination of the ray
traversal for the channel Cn+1 if tn+1 surpasses the closest hit distance, thit,

Channel I
Channel II
Channel III

Closest Sample
Rejected Sample
Null Collision

DDA Steps
Majorants Woodcock Traversal

I.

III.
II.

Figure 6: The Woodcock tracking process with three DDA traversals
across three majorant grids from a perspective of one ray: Starting from
channel I, a DDA traversal is initiated, and between each DDA step,
Woodcock steps are taken where null collisions are discarded. These
processes are repeated until a sample for each channel is found. The
closest sample among the three channels (channel II) is accepted, and
the others (I and III) are rejected.

for channels between C0-Cn, as it would have been discarded in the final
stage anyway. C-style pseudo code for this method is shown in Listing 3.

Listing 3: Multi-channel Woodcock tracking using N DDA traversals

void nDDAMultiChannelWoodcock(
Ray ray, HitRecord& hit, int N){

hit.t = FLT_MAX;
for(int n = 0; n < N; n++){//do N DDA traversals

DDA dda(ray);
int cellID = dda.curCell();
do{//DDA traversal

float t = dda.cellEntryT();
float maj = majorants[cellID * N + n];
while(true){//Woodcock steps in the cell
t += woodcockStep(maj);
if(t > hit.t){//a closer sample exists?

dda.stop();
break;//No need to sample

}
if(!dda.InCurCell(t))//bounds check

break;//go to the next cell
float scalar = volumeAt(ray.org

+ ray.dir * t, n);
//scalar’s color (r,g,b) and density (a)
float4 sample = trFunc(scalar, n);
//null collision check n-th channel
if(!nullCollision(maj, sample.a)){
//Return the color, discard the "a"
hit.color = float3(sample);
hit.t= t;
dda.stop(); break;//stop this traversal

}
}cellID = dda.nextCell();

}while(!dda.shouldStop()); } }

4.5. Method #2: One DDA Traversal over Majorant Grids

The next logical step on top of the method presented in Subsection 4.4
is using a single synchronized DDA traversal over N channels to prune
to-be-discarded samples earlier.

The data structures employed remain consistent with those outlined
in Subsection 4.4, featuring majorant grids for each channel, subject to
updates upon transfer function modification.

The rendering commences with a singular DDA traversal over the
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majorant grid. Multiple Woodcock steps are taken within each majorant
cell for each channel until either a sample is accepted or all of the rays
leave the current majorant grid cell. Similarly to the method in Listing 3,
we pick the closest sample to the ray origin if there are multiple hits
within a majorant cell. In other words, the outer for-loop iterating over
N channels in Listing 3 is placed inside the DDA traversal.

Channel I
Channel II
Channel III

Closest Sample
Null Collision

DDA Steps
Majorants Woodcock Traversal

I.
III.II.

Figure 7: The Woodcock tracking process with a single DDA traversal
across three majorant grids from a perspective of one ray: A DDA
traversal is initiated, and between each DDA step, three Woodcock
traversals are initiated in the order of channels I, II, and III. The processes
are repeated until a sample is taken (by channel II in this case). We let
a final round of Woodcock traversal run for channel III as it could find
a closer sample. Only the closest sample from channel II is accepted.

By synchronizing the N Woodcock tracking steps into one DDA
traversal, we potentially reach the closest sample sooner and with fewer
iterations (compared to Subsection 4.4). Also refer to Figure 7 for an
illustration of this method and Listing 4 for a streamlined kernel code.

Listing 4: Multi-channel Woodcock tracking using a synchronized DDA

void syncDDAMultiChannelWoodcock(
Ray ray, HitRecord& hit, int N){

DDA dda(ray);
int cellID = dda.curCell();
hit.t = FLT_MAX;
do{//do a DDA traversal

for (int n = 0; n < N; n++){//for channels...
float maj = majorants[cellID * N + n];
float t = dda.cellEntryT();
while(true){//Woodcock steps in the cell
t += woodcockStep(maj);
if(t > hit.t || //a closer sample exists?

!dda.InCurCell(t))//bounds check
break;//go to the next channel/cell

float scalar = volumeAt(ray.org
+ ray.dir * t, n);

//scalar’s color (r,g,b) and density (a)
float4 sample = trFunc(scalar, n);
//null collision check for n-th channel
if(!nullCollision(majs[n], sample.a)){

//return the color, discard "a"
hit.color = float3(sample);
hit.t= t;
//regardless of there is a closer
//sample or not we need to stop DDA
dda.stop();
break;//go to the next channel/stop

}
}

}// no channel was selected: null collision
cellID = dda.nextCell();

}while(!dda.shouldStop()); }

5. Results and Evaluation

In this section, we evaluate the performance impacts of parameters
such as macrocell resolution (Subsection 5.1), number of channels
(Subsection 5.2), and visual effect of using our, and some of the previously
used, blending functions (Subsection 5.4).

We utilize diverse datasets to drive more extensive conclusions. NYX
is a cosmological simulation that is in 512 × 512 × 512 resolution,
Hurricane is a weather simulation that is flatter in the z dimension with
500×500×100 resolution, Miranda is a hydrodynamics simulation with
highly overlapping features in 256×384×384 resolution and, Zebrafish
is a well-known multi-channel microscopy dataset in 640×640×121
resolution [ZDL∗20].

We run our experiments on an NVIDIA RTX4090 GPU using the
program we implemented using CUDA. We take the average timing of
500 frames for each data point after rendering 50 warm-up frames, which
are excluded from the average.

5.1. Impact of Macrocell Resolution

The resolution of the macrocell and majorant grids directly impacts our
method’s performance, as these grids approximate density at specific
volume points. This approximation influences the Woodcock stepping
size and collision probabilities. A finer grid allows for better stepping and
fewer null collisions but is more memory-intensive, while a coarser grid re-
sults in more null collisions, increasing the time spent per rays [MLB∗23].
In this section, we measure the performance of our two multi-density
Woodcock tracking methods from section 4 over macrocell size.

We measure the rendering times of each algorithm for direct volume
rendering using the emission+absorption (E+A) model alone and the
E+A model with shadows.

Four channels of NYX, Hurricane, and Miranda and three channels of
Zebrafish are used for this experiment. Figure 8 shows the render times vs.
decreasing macrocell resolution. For each data point going forward, we
insert twice as many cells per dimension within a macrocell, i.e., 8× less
resolution. We record 291, 504, 453, and 686 frames per second (FPS)
for NYX, Hurricane, Miranda, and Zebrafish datasets. Our fastest timings
with volumetric shadows are 178, 286, 299, and 577 FPS, respectively.
We also report the memory consumption of our application using the
most performant data macrocell resolution in Table 1.

We observe that method #2 from Subsection 4.5 with 1-DDA traversal
achieves the highest frame rates. For both methods, the performance
peaks around 64 cells per macrocell (4×4×4) for almost all datasets.
We record the memory consumption of our data structures to be between
0.58-4.69% of the original data sizes at the peak performance.

We also tested a third method that uses a single majorant buffer,
summing all majorants into one value and testing each sample against
the cumulative majorant. The idea was to potentially reduce the number
of steps, but the results were negative. This method achieved only
59.88-84.03% of the performance of our fastest method and required
about 8× the macrocell size, consuming more memory. Consequently,
we omit this method and its results. Notably, this approach converges
to a technique described in the overlapping volumes chapter of Fong
et al. Production Volume Rendering course [FWKH17].

5.2. Performance Impact of Multiple Channels

The number of channels is one of the factors that may add a significant
cost to algorithms such as ray marchers. Therefore, we document the
performance of our methods against the increasing number of channels.

© 2025 The Author(s).
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Figure 8: The plots of average rendering times in seconds (lower is better) against increasing macrocell sizes (# of cells within a macrocell) for
four datasets. We compare our two methods: “N-DDA MDWT (Multi-density Woodcock Tracking)” from Subsection 4.4, and “1-DDA MDWT” from
Subsection 4.5. Solid lines are for the Emission+Absorption (E+A) model, while dashed lines represent timings using E+A with shadows. The split
images in the second row show individual channels on the top halves and multi-channel visualization in the bottom halves (with shadows).

We use a standard ray marcher as a baseline in these experiments. To mirror
the behavior of out-of-the-box visualization solutions closely, we use the
common mix blending function with equal weights for the ray marcher.

Figure 9 depicts the performance of our two methods and the afore-
mentioned ray marcher against the increasing number of channels. The
ray marcher and our methods are configured to produce similar-quality
images using the same transfer function and scene configurations.

We artificially amplify three of our datasets’ channel counts by
duplicating the same channel data with different transfer functions to
allow testing for higher scalability. Unlike the others, the Hurricane
dataset contains 12 unique channels, so we use it as is.

Our most efficient method (Subsection 4.5) can render 12 channels
simultaneously, equivalent to rendering approximately ≈4−8 channels
sequentially with volumetric shadows. Adding more channels creates
occlusion, hiding previously visible layers; our multi-density Woodcock
tracking algorithm exploits this fact and terminates on the first hit,
yielding amortized timings. In contrast, ray marching collects partial
opacities along the ray direction, leading to a linear traversal cost. The mix
operator must also blend N different colors, introducing another linear
cost, causing ray marching to scale linearly with the number of channels.

We observe some rapid changes in the performance trend, especially
observable in NYX between 8-10 channels (in Figure 9). This spike is
upward, indicating a loss of performance. Although channels 8-10 are
more occlusive, they do not improve performance because each volume
occupies a large portion of the space without overlapping significantly.
This non-overlapping space consumption causes the majorant grids to
become more dense, and less adaptive which in-turn causes our algorithm
to explore and stop more often to check for collisions.

Our N-DDA multi-density Woodcock tracking (method #1 from Sub-
section 4.4) does not obtain as much amortization from occlusion as the
1-DDA multi-density Woodcock tracking (method #2 from Subsection 4.5)
does despite using the same data structure. From our observations, this out-
come can be explained by the increasing number of redundant traversals
since this method does not prune some of the redundant traversals that are
pruned in method #2 as explained in Subsection 4.5 and seen in Figure 7.

Table 1: Memory consumption of our implementation. The columns report
the consumption for the specified number of channels. “Base” shows
the memory allocated for the dataset; for the macrocells and the majorant
grid, the consumption for the best-performing resolution is reported.

Dataset\Memory(MB) Base Macrocells Majorants Total
NYX (4 channels) 2048.00 64.00 32.00 2144.00
Hurricane (4 channels) 381.47 11.92 5.96 400.35
Miranda (4 channels) 576.00 18.00 9.00 603.00
Zebrafish (3 channels) 567.15 2.19 1.01 570.35

5.3. Quality vs. Performance

Woodcock tracking enables one sample per ray, allowing frames to
accumulate and gradually reduce variance. In contrast, ray marching uses
an analytic solution that takes multiple partial samples per ray, resulting
in images with virtually no variance but at a significantly higher time
cost (as shown in Figure 9).

This is indeed a trade-off between per-frame performance and noise.
To evaluate the cost-efficiency of our method, we conduct “similar
performance” and “similar quality” experiments using the NYX and
Miranda datasets, as seen in Figure 10. First, we compare the ray
marcher’s performance to our 1-DDA MDWT in similar quality setups.
We find 16 samples per pixel(spp) to yield visuals of similar quality to the
ray marcher sampling at the Nyquist rate (to avoid aliasing artifacts). Next,
we fix our method’s parameters and compare its performance to the ray
marcher by linearly increasing the sampling interval from the artifact-free
Nyquist rate to the point where both methods perform similarly.

Our results show that the ray marcher can achieve high-quality images
in less time, particularly with the NYX dataset, which reaches a similar
quality image ≈3× faster. However, similar quality is achieved at around
the same frame rate in datasets with more empty space, like Miranda. In
the "similar performance" benchmarks, ray marcher images rendered with
sampling intervals larger than the Nyquist rate exhibit significant aliasing
artifacts, obscuring features. This explains the drastic variations seen
in RM-Mix images in Figure 10, where undersampling leads to severe
drops in quality. Unlike our Monte Carlo-based solution, ray marching
cannot improve image quality incrementally. Additionally, increasing
spp in our method incurs a linear cost while reducing the ray marcher’s

© 2025 The Author(s).
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Figure 9: The average rendering times in milliseconds (lower is better) versus the increasing number of channels across four datasets. For each dataset,
we present the rendering of individual channels on the left, all channels combined with multi-channel Woodcock tracking on the middle, and a line
plot on the right. The line plots compare “N-DDA MDWT (Multi-density Woodcock Tracking)” from Figure 6, our “1-DDA MDWT” method from
Subsection 4.5, and "Ray Marcher-Mix," a ray marcher using mix blending. Solid lines represent DVR timings with only the Emission+Absroption
(E+A) model, and dashed lines represent the performance of our methods using E+A plus volumetric shadows.

sampling interval scales nearly exponentially. Our approach maintains
higher interactivity without requiring the highest spp from the start.

5.4. Visual Comparisons for Blending Functions

We compare the visual results of various inter-channel blending operators
over three datasets in Table 2, using FLIP and Peak Signal to Noise
Ratio(PSNR). We use four flat colormaps: red, green, blue, and white.
In these experiments, we compare an image-space method, two not
physically based blending functions, to our physically-based density
blending function. These are post-render compositing and mixing with
equal weights from Fluorender [WOH∗17] and max opacity selection
from Rice and Schulze [RS04].

Our results indicate the post-render compositing offers the least
physically correct result and the farthest image in terms of difference.
Although this mode is intended to offer another way to examine the
data, it makes denser datasets such as NYX, and Hurricane harder to
distinguish as both the colors and depth relationships are altered.

The mixing function has the unique property of blending colors into a
mixture of two colors. However, this can be counterintuitive to untrained
users as these colors can be out of the current set of colormaps, or they
can be confused with other fields if the color is present in a colormap.
This mixing is more obvious in the Hurricane dataset, where reds and
blues turn into magenta (which is not a color in the set of colormaps).

Upon reviewing the experiments in Subsection 5.2 and Subsection 5.4,
we notice that visual clutter becomes more pronounced as the number of
channels increases. Beyond five channels, the blending colors may start
appearing counterintuitive. Additionally, employing blending functions
that generate out-of-colormap colors like mix can exacerbate this problem,
potentially leading to confusion between a field and overlap of the other
two fields.

The results closest to our blending function are from max opacity
selection, as it often selects the same maximum opacity sample as ours.

However, this approach can lead to the loss of semitransparent regions
due to the sharp cut-off of max().

When tested on the Zebrafish dataset, the mix and max functions show
minimal differences from our approach. In contrast to simulation data,
where features cluster in specific regions, the microscopy data exhibit
less overlap between channels. This reduced overlap leads to less color
blending, resulting in similar outcomes across blending modes.

Density-based blending function offers an intuitive way to blend colors
as it can blend the colors through more neutral tones while not losing
information of more transparent regions due to sharp cut-offs. It remains
physically based as it stems from the direct generalization of Woodcock
tracking’s sampling to multiple channels.

6. Discussion and Conclusion
In this paper, we presented an efficient method for rendering multiple
volume channels by extending the Woodcock tracking algorithm to handle
multiple densities. We explored two approaches: an intuitive method
(Subsection 4.4) using N serial traversals to find the closest sample and
a more performant method (Subsection 4.5) that combines N traversals
into one for fewer steps. Additionally, we introduced a Monte Carlo
estimator for a physically motivated inter-channel blending function. We
generalized the framework to support other blending functions, including
user-weighted blending and max opacity selection.

Our most efficient method achieved real-time frame rates for
multi-channel rendering by leveraging occlusion to terminate traversal
upon sampling. Unlike ray marching, which struggles with interactivity
when casting shadow rays, our approach samples and casts shadow
rays for a single sample without performance penalties. While initial
frames exhibited variance, the results quickly converged to high-quality
visuals within 20-30 ms. Despite producing initial noise-free images,
taking fewer samples to increase the performance is not an option for
ray marcher, which results in aliasing artifacts.

We proposed a density-based blending approach that avoided the

© 2025 The Author(s).
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Figure 10: Similar quality (left) and performance (right) benchmarks for two datasets. The similar quality images display slices rendered with our Multi-
Density Woodcock Tracking (MDWT) at increasing samples per pixel (spp), while the bottom-right half shows the ray marcher using mix blending with half of
the minimum cell size as the sampling interval (Nyquist rate). The similar performance images show slices rendered with the ray marcher and mix blending
(RM-Mix) for increasing sampling intervals, with the bottom-right half showing the same scene rendered by MDWT at 1 spp. The rendering time for each
slice is indicated on the left side of each image, and each image is accompanied by a line plot of the average rendering times in milliseconds (lower is better).

pitfalls of opacity and compositing methods, producing distinct results
without out-of-transfer-function colors. It required no complex interfaces,
handled occlusion with many opaque channels, and unified prior blending
functions, allowing users to choose blending based on their needs, such as
weighted mixing for correlation discovery or max opacity for emphasizing
dominant features.

A vital discussion is the impracticality of residual ratio tracking meth-
ods [NSJ14,KHLN17] in the sci-vis context due to how color information
is derived. Unlike cinematic rendering—where RGB-classified data can
be treated as separate volumes with dedicated majorants—sci-vis applies
a transfer function to a single volume. Storing per-color-channel majorants
is inefficient using uniform grids— which often outperform hierarchical
structures in traversal and update performance [ZWS∗24] — as this would
incur significant memory overhead if replicated for each transfer function
channel. Moreover, integrating minorant-based optimizations is also unsuit-
able as the analytically solvable control component of the extinction (alpha)
and emission spectra (the RGB) could differ for the same transfer function.

This work suggests several potential avenues for future research. In
Subsection 4.2, we introduced a framework for defining new blending
functions, which could be expanded through a user study and investigating
novel functions. Attribute-aware radial basis functions [MZS∗23] offer
a promising multi-channel blending strategy. The potential of the N-DDA
method (Subsection 4.4) to reduce memory contention in out-of-core
use cases could also be explored. Additionally, extending the approach
to unstructured meshes using techniques like those from Morrical
et al. [MSG∗23], as well as research into ensemble and uncertainty
visualization, would be valuable.

Ultimately, our multi-density Woodcock tracking method offers a
performant and versatile solution for multi-channel volume visualization.
Adapting contemporary rendering research, it delivers high-fidelity
images obtained in real-time and provides more interactivity than previous

multi-channel sci-vis methods. Our physically driven blending function
preserves colormaps and depth-ordering without complex user interfaces,
enabling intuitive, user-driven visualization.
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