Materializing Inter-Channel Relationships with Multi-Density
Woodcock Tracking
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Fig. 1: Multi-channel volume renderings for two datasets. Zebrafish dataset (640 x 640 x 121) shown in (a—g): (a) converged
rendering at 2560 x 1440 with 100 FPS using our multi-density Woodcock tracking. (b) Crop of (a) with individual channels
shown in (c—e). (f) Heatmap of per-ray cost when sampling all channels independently versus (g) our amortized multi-density
approach. Demonstration of gradient-based shading over the Miranda dataset (384 x 384 x 256) in (h—j): (h) emission+absorption
only, (i) shaded with the same material properties, and (j) using our per-channel material shading system that assigns different
diffuse and specular properties per channel.

Abstract

Volume rendering techniques for scientific visualization
have recently shifted toward Monte Carlo (MC) methods
for their flexibility and robustness, but their use in multi-
channel visualization remains underexplored. Traditional
multi-channel volume rendering often relies on arbitrary,
non-physically based color blending functions that hin-
der interpretation. We introduce multi-density Woodcock
tracking, a simple extension of Woodcock tracking that
leverages an MC method to produce high-fidelity, physi-
cally grounded multi-channel renderings without arbitrary
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blending. By generalizing Woodcock’s distance track-
ing, we provide a unified blending modality that also in-
tegrates blending functions from prior works. We fur-
ther implement effects that enhance boundary and feature
recognition. By accumulating frames in real-time, our ap-
proach delivers high-quality visualizations with percep-
tual benefits, demonstrated on diverse datasets.

Ray tracing, Volume Rendering, Scientific visualiza-
tion, Monte Carlo Methods

1 Introduction

From simulations to microscopy images, visualization of
scientific data is essential for domain scientists to draw in-
formed conclusions quickly and accurately. Modern sci-
entific data are typically multifaceted, with each aspect



represented as a distinct channel (field) corresponding to
a specific attribute (such as velocity, temperature, or pres-
sure) of the phenomena within a volume. Understanding
causality and the relationships between these attributes re-
quires examining them not only in isolation but also in re-
lation to one another. Multi-channel visualization offers
a viable solution, providing a practical approach for ob-
serving the intricate connections among different fields in
the data.

Volume rendering techniques have evolved from ana-
Iytical compositing-based methods—such as slicers [1]
and ray marching [2]—to Monte Carlo-based tracking
solutions. Unlike compositing methods, which combine
partial samples via opacity [3], tracking approaches inter-
pret opacity as a physical density, allowing for a single
collision per ray. A prominent technique in this domain is
Woodcock tracking [4]. These Monte Carlo methods are
generally easy to implement and provide greater interac-
tivity and flexibility, but their application to multi-channel
scientific volumes remains largely unexplored.

Multi-channel volume rendering of multiple fields
comes with additional challenges in color blending. Un-
like single-channel methods, rendering N fields involves
N opacities that can sum to over 100%, complicating cal-
culation of color contributions. Standard approaches nor-
malize opacities and blend with respect to the maximum
opacity, compositing over previously accumulated color.
However, these methods can cause color discontinuities
and out-of-colormap colors, and increase the computa-
tional cost (B(N)) as the number of channels grows. More
channels also complicate user interaction [5, 6], making
it harder to design blending operators that ensure proper
depth ordering and remain intuitive [7].

Despite their limitations, prior blending functions re-
main useful in certain contexts. For instance, ignoring
occlusion can aid when spatial relationships are irrele-
vant [8], and mixed colors can reveal correlations with
primary-color transfer functions [5, 6]. However, no for-
mal method exists to unify these techniques, and doing
so becomes especially counterintuitive with compositing-
based rendering.

A further overlooked aspect of multi-channel ren-
dering is the use of additional effects. Most exist-
ing multi-channel renderers [9] support only basic emis-
sion—absorption models [10], leaving effects like shad-
ows or proxy-geometry-based shading underexplored.

Whether due to rendering costs or implementation com-
plexity, these features are rarely included—yet, consider-
ing their utilization in single-channel visualization [11],
they could greatly improve the perception of structures
and boundaries within the data.

In this work, following a similar idea to analog de-
composition tracking [12], we extend Woodcock track-
ing to multi-channel scientific visualization (sci-vis), ad-
dressing the fundamental challenges of rendering multi-
channel data. Our algorithm employs a Monte Carlo pro-
cess to identify the closest sample by evaluating the den-
sity of each channel along the ray, thereby avoiding the
limitations of previous methods that rely on accumulat-
ing numerous partial samples. Building on our earlier
work [13], this work further expands on the application of
additional effects, such as shadows and material shading.
It broadens the evaluation by incorporating new datasets
and additional experiments. As illustrated in Figure 1,
our approach enables order-independent, accurate, and ef-
ficient visualization of arbitrary combinations of N chan-
nels across a volume. Our contributions are:

* Two generalizations of the Woodcock tracking
traversal to multi-channel volumes:

— an easy-to-implement serial method that tra-
verses and collects samples for N channels one
at a time,

— and an optimized method that eliminates redun-
dant steps by traversing all N channels in a sin-
gle pass.

* A density-driven, physically grounded inter-channel
blending function that overcomes the limitations of
earlier color blending methods.

* A unified rendering modality within the Woodcock
tracking that allows substituting inter-channel color
blending functions from prior works—e.g., max in-
tensity projection and weighted mixing.

* Low-cost implementations of additional effects—
such as shadows and a per-channel material shading
system— tailored for multi-channel rendering.



2 Related Work

2.1 Volume Rendering

Earlier works in volume rendering utilize slicers [14, 15,
1, 16] where a 3D texture of view-aligned slices are
re-sampled to approximate the volume rendering equa-
tion. Although slicers are actively used in multi-channel
volume rendering, single-channel methods largely aban-
doned slicers with the advent of GPGPU frameworks like
CUDA and OpenCL.

Nowadays, the standard way to render volumes is ray
marching-based methods [17, 18, 19, 20]. These methods
produce high-quality, noise-free images by analytically
approximating the volume rendering equation via accu-
mulated contributions from multiple partial samples along
aray’s path. However, when undersampling, marchers in-
troduce bias and artifacts even with jittered sampling [21].
Additionally, incorporating effects such as volumetric
shadows or gradient shading dramatically hinders render-
ing performance, as these require more sampling for each
initial view-aligned sample [22]. To combat these costs,
prior works have proposed space skipping and adaptive
sampling strategies [23, 24, 25, 26]. Specifically for shad-
ows, shadow maps offer a solution for achieving more in-
teractive rates, but they occupy extra memory and require
recomputation whenever the transfer function or lighting
changes [10].

Tracking-based Monte Carlo estimators have gained
traction in scientific and cinematic rendering [27]. De-
spite introducing variance (noise) and needing to converge
over multiple samples, they offer advantages such as ef-
ficient handling of additional effects like shadows due
to their lower asymptotic complexity. They also enable
artifact-free adaptive sampling [28, 29]. Szirmay-Kalos
et al. further improve efficiency by using a 3D digital dif-
ferential analyzer (DDA) to adjust sampling rates based
on local density estimates stored in a coarser grid.

Woodcock (delta) tracking has become popular in re-
cent works [30, 31, 32, 33], where volumes are homoge-
nized using fictitious particles based on maximal density.
Morrical et al. introduce adaptive Woodcock tracking for
compressed clusters of unstructured meshes [34]. Zell-
mann et al. explore data structures and algorithms to ef-
ficiently path trace Adaptive Mesh Refinement volumes
using Woodcock tracking [35].

The use of tracking methods for rendering multiple
overlapping volumes has been explored in prior work [36,
12], predominantly within cinematic rendering. Novak et
al’s residual ratio tracking [36] reduces variance by split-
ting the volume into homogeneous control and heteroge-
neous residual volumes. Kutz et al.’s spectral and decom-
position tracking [12] introduces the idea of selecting the
minimum distance among free-flight samples from multi-
ple volumes, a technique shown to fit within the integral
framework of Galtier et al. [37] and later expanded fur-
ther [38]. In contrast, we utilize these ideas for multiple
overlapping heterogeneous volumes within the sci-vis ap-
plications.

2.2 Multi-Channel Visualization

The multi-channel visualization has two orthogonal prob-
lems: user interface [39] and rendering [40]. In this paper,
we primarily address the rendering aspect while allowing
the use of traditional transfer functions. Regardless, the
solutions to these orthogonal problems can sometimes be
intertwined [41]. The work by Kim [7] offers many in-
sights into the multi-channel visualization domain.

Given the tedious nature of setting a precise transfer
function for all the channels, Pan et al.’s work [42] con-
centrates on design galleries where users can select im-
ages resembling their target image to construct a transfer
function implicitly. Likewise, Kim et al. [43, 44] employ
dimensionality reduction schemes to aid in the design of
multidimensional transfer functions. There is no reason
our work would not be compatible with these transfer
function helper frameworks if their neural networks are
trained using our renderer.

Khlebnikov et al. [45] propose a random-phase Gabor
noise-driven cell-space redistribution pattern and filtering
scheme for simultaneous multi-channel display. How-
ever, this technique can blur details or create counterintu-
itive renderings, notably for untrained users. Herzberger
et al. [46] introduce the residency Octree for out-of-core
mixed resolution in web-based multi-channel rendering,
focusing on efficient data streaming with a ray-guided
volume renderer from Crassin et al. [47].

FluoRender [48, 49, 9] is one of the most prominent
tools for multi-channel visualization, using slicer-based
rendering while enabling a variety of user interactions.
Slicers render one slice at a time, loading only necessary



transfer functions and channels, effectively serializing the
rendering and reducing texture memory and VRAM us-
age. FluoRender users can select, highlight, or segment
structures using brushing tools with morphological dif-
fusion, aiding in exploring correlations. To avoid visual
clutter from overlapping fields, Fluorender offers non-
physically based compositing modes, such as post-render
compositing and weight-based color mixing with depth
correction. Given Fluorender’s broad appeal, we incor-
porate some of these modes into our Woodcock tracking
experiments.

Much like Fluorender, Napari [50] is a multi-channel,
opacity-based visualization tool widely used in the bio-
logical sciences. It supports multiple blending and com-
positing modes, making it one of the most versatile pub-
licly available tools for multi-channel visualization. How-
ever, Napari presents a trade-off between color-correct
and depth-correct blending, as achieving depth accuracy
requires the use of maximum intensity projection (MIP).

Opacity-based rendering often relies on physically in-
accurate models and struggles with opacity mixing. Previ-
ous efforts [8, 5, 6] have addressed some issues with inter-
channel color blending. We propose adopting density-
based approaches, such as Woodcock tracking, to over-
come to tackle these issues in a physically-motivated
manner. Density-based approaches shift color blending to
screen space, accumulating one sample at a time across
frames. Our approach also supports integrating other
blending techniques from prior works.

3 Woodcock Tracking Background

In Woodcock tracking [4], photon and particle behaviors
are simulated through a Monte Carlo process. General-
izing the rendering equation [51] for volumes and sim-
plifying for the emission/absorption model gives us the
simplified Volume Rendering Equation (VRE):

L(x,0) = iIOT(t)Ga(x)Le(x,,a))dt.

ey

In Equation 1, radiance, L(x, ®), at point x looking in
the direction of @ is calculated by taking the integral of
transmittance 7 (¢) times the absorption coefficient o (x)
and emitted radiance L, (x;, @) between x and x, where
d denotes the maximum path length in . In the sci-vis

context, L, is determined by the colormap of the transfer
function that maps a scalar number to an RGB value, and
0,(x) is influenced by the user-defined alpha component
of the transfer function for the same scalar value.
The transmittance for homogeneous volumes follows
the Beer-Lambert law where o; is constant:
T(t) = exp(—opt). 2
To simulate photon-particle collisions, we calculate a
photon’s free-flight distance until it hits a particle, denoted
as t'. This calculation involves computing the probability
density function (PDF) of T'(¢), denoted as p(¢), and im-
portance sampling p(¢) using £ as a random number:

’r_ _ln(l_é)'

p(t) =orexp(—oyt), t = 3)
Oy

To apply this formulation to heterogeneous volumes, we
can imagine the heterogeneous volume homogenized by
fictitious null particles. The ratio, and thus the probabil-
ity, of encountering these null particles is dictated by the
maximum density of the volume or subvolume. This co-
efficient, known as the majorant, is denoted as 6 and can
be substituted for o; in Equation 3.

Finally, the VRE needs to be adjusted to handle null
collisions and normalize coefficients, essentially turning
them into probabilities. Therefore we define the probabil-
ity of hitting a real particle, Py.q(x) as the ratio of den-
sity at point x to maximum density (majorant). There-
fore, the remainder of the probabilities is the null colli-
sion, Py, (x), probability.

Prear(x) = Ga(-gX)» Poai(x) = G_TGQ(X)'

So we end up with the final form of Equation 1:

d

Lix,0)= P(t) [Prear (x) Le (¢, @) + By (X) L(x;, @)] dt.

1=0

()

This version of the VRE selects one of two paths when
computing incoming color at x from direction ®: (i) With
probability P, the scalar field is sampled, assigning
L.(x;, ®) a color via transfer function f,,,). (ii) With prob-
ability P, the function L(x, @) is invoked again (recur-
sive) from a further point x,. The integral relies on p(z),
a stepping function. Since this approach follows a Monte
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Fig. 2: Visual comparison of various blending modes over a close-up of Miranda dataset with four channels (left-to-right): Com-
positing after rendering, mix function from Equation 10, our density-based blending function from Equation 6, and our blending
mode with volumetric shadows. They are evaluated on their ability to achieve correct depth ordering and physically based color

blending.

Carlo process, we use its importance-sampled version, the
free-flight distance ¢’, from Equation 3 to determine the
stepping distance.

While the majorant & is presented as a global constant,
subdividing the volume into regions with local majorants
6; reduces null collisions by better constraining null par-
ticles, improving performance. Instead of a global &, we
use a grid of G;s.

We use a similar notation to [27] and point the readers
to [52] for further details of these derivations.

4 Method

As the VRE is defined for single channel volumes in
Equation 5, we introduce our physically motivated formu-
lation to render and blend N fields, 6, | n € N A n <N,
as a natural extension of Woodcock tracking in subsec-
tion 4.1. Additionally, we propose another extension to
Equation 5 to formally incorporate blending functions
from prior works in subsection 4.2.

We detail how to set up a Woodcock renderer that uses
multiple densities in subsection 4.3. Then, in subsec-
tion 4.4 and subsection 4.5, we explore the implementa-
tion space for the method proposed in subsection 4.1.

4.1 Multi-density Woodcock Tracking

We can devise a physically based and convenient Wood-
cock tracking method by treating N fields as multiple den-
sities. Doing so, we naturally extend the physically based

Woodcock tracking to multiple channels.

We generalize the formulation Equation 5 to operate
over multiple fields. We substitute the Py Le(x;, @) term
with the sum of the multiplication between probabilities
P(6,) and N radiances where 6, is the n-th field of the
volume to end up with a formulation for multi-density
Woodcock tracking:

d N
Lix,0) = [ p)] X (P(60) Ll 0,6,))
N ©)
+Poan () L, @) | .
The modified probabilities are as follows:
c,(x,6, N o x, 0,
P(Gn,x)zg, Pnu”(x)ZI—Z( u(_ ))
(o = G
(N

Where function o, yields the density for channel 6,

at point x, i.e., o,(x,6,) = 6,(x). We keep the prop-

erty of probabilities adding up to 1 from Equation 4, so
2/:1 P(6,) + Py = 1 for any point x.

One way to think about this formulation is that we are
testing for a real collision (absorption) for N volumes.
The remaining possibility is the null collision probability.

Mapping the set of N opacities to physical densities, we
turn the process into a Monte Carlo process that blends
the colors through accumulation in screen-space. Un-
like prior blending/sampling strategies, our approach en-
sures physical correctness without arbitrary normaliza-
tions. Therefore, Equation 6 implicitly defines a distinct
blending function.

D.-based (ours) w/ shdws




Figure 3 illustrates our density-based blending function
applied to three overlapping volumes, each mapped to a
flat primary-colored transfer function.

ours I} 1 )= [

Fig. 3: Three single-channel renderings are shown from left to
right: Red, green, and blue cube volumes with linearly decreas-
ing densities on the X, -X, and -Y axes, respectively. Using our
formulation from Equation 6, their multi-channel rendering is
given on the right-most image.

4.2 Generalization to Blending Functions in
Woodcock

Previously defined methods for blending N channels are
often exploratory rather than physically based. Re-
searchers have introduced various blending functions,
such as maximum opacity selection and user-weighted
mixing [5, 6], which have been effective in practice.
While these blending techniques are not physically mo-
tivated, they offer valuable heuristics and have an estab-
lished user base accustomed to their results. This section
demonstrates how these methods can be integrated within
a Woodcock tracker, leading to alternative formulations.

To allow the substitution of other blending functions,
we go back to Equation 5, and we exploit the fact that
these blending functions serve the purpose of reducing
N colors and N opacities to one color and opacity pair.
By allowing redefinition of 6,(x, 6,), and L.(x, @, 6,,), we
can specialize to other blending functions for a Woodcock
tracker. Note that, since N fields co-exist in the same vol-
ume, the majorant, &, is now the sum of N maximum den-
sities.

The maximum intensity projection (or MIP) always
chooses the sample with the highest opacity at the given

sample point. Therefore, the MIP can be defined as:

0,(x), if 6,(x) > 6;(x) |
o-a(x7 en) = VieNAI<N ®)
0, otherwise.
Jom(On(x)), if 6,(x) > 6;(x) |
Le(x,0,6,) = VieNAi<N
0, otherwise.
©

As max deterministically picks the same sample, over-
lapping semitransparent regions can get filtered out by one
more dense region. Despite allowing some regions to steal
visibility from others, it merits intuitive usage. Figure 4
shows a visualization of max blending.

wir(EH)- I

Fig. 4: Visualization of max blending function from Equation 8
using the same three fields from Figure 3.

Mixing with user-defined weights (i.e., mix) allows
users to adjust weights for each channel to allow color
mixing among them. Using weights, w,, mix blending
can be achieved by using the same o,(x, 8,) as Equation 8
and re-defining the radiance as:

N fem(Bn(x)) - 0 (x) - Wy

max (0 (x),0,(x)---Oy(x)) (10)

Le(xa @, emwn) =

Although the user interface complexity for the mix
blending scales linearly with the number of channels, it
can show correlations with mixed colors. Please see Fig-
ure 5 for a rendering with the mix function.

i IR ) -

Fig. 5: Visualization of mix blending function from Equation 10
using equal weights and the same three fields from Figure 3.

Another downside of blending modes like mix and max
is that they require finding a maximum among N samples



as a normalization factor, which has the algorithmic com-
plexity of ®(N). In contrast, our density-based blending
function from subsection 4.1 does not require a normal-
ization factor (e.g., maximum opacity selection) that en-
tails a linear cost. Instead, it probabilistically selects one
sample among channels, resulting in better average algo-
rithmic complexity.

We present definitions for some well-known functions
but this approach is not constrained by them, and using
the open-ended formulation we provided in this section,
users can invent new blending functions. o©,(x,6,) con-
trols collision possibilities, and it can be parameterized to
pick something other than the maximum opacity sample,
or L.(x,®,0,) can define a nonlinear combination of N
channels.

There are also blending modalities completely disas-
sociated from the rendering process that occurs in the
image space, such as compositing images after render-
ing each channel (post-render compositing). Post-render
compositing offers an occlusion-free view, but it loses the
depth information. It is commonly used in tools like Flu-
orender.

Figure 2 illustrates some of these blending functions’
benefits and visual distinctions on a real dataset.

4.3 Setup for the Woodcock Renderer

We developed a base renderer in CUDA that stores N
structured grids of scalars in 3D textures, each with di-
mensions k x [ x m. Each loaded channel utilizes their
separate transfer function to determine their user-defined
densities and colors. The renderer builds a coarser k' x
I" x m" macrocell grid. Within each macrocell, scalar
ranges for each channel (a min and max pair) are stored,
resulting in a memory consumption of N x kK’ x I’ x m’ x 2
floating-point values per channel. The construction of
the macrocells can be considered a rasterization process,
where the original grid of scalars is projected onto a grid
with reduced resolution.

Every time a transfer function changes, we calculate
that channel’s majorants for each macrocell. The pro-
cess involves determining the maximum opacity associ-
ated with the scalar value range of each macrocell for the
given channel. Therefore, for each macrocell, we iter-
ate between the min and the max scalar values, fetching
the opacity mapped to them from the respective channel’s

transfer function. The majorant for that macrocell is the
maximum opacity found after the loop. We run these
calculations using a CUDA kernel in parallel. The pro-
cess yields a majorant grid with the exact resolution as
the macrocell grid. Therefore, we store k' x I' x m' x N
floating-point numbers for the majorants.

Listing 1: Implementation of Woodcock stepping function

float woodcockStep(float majorant){
return -(log(1.0f - randFloat()) / majorant);}

Using a 3D Digital Differential Analyzer (DDA) traver-
sal, we employ ray tracing through the majorant grids.
Woodcock steps are taken as shown in Equation 3 (cal-
culated with Listing 1) within each macrocell based on
the active majorants. Upon identifying a collision at point
p, we sample the 3D textures to retrieve the relevant chan-
nels’ scalar value at p. The scalar is given to the respec-
tive channel’s transfer function (TF) to get the color and
opacity. We interpret the linear RGB returned from TF
as an emissive color. We employ rejection sampling us-
ing the null collision probability in Equation 4 to see if
the sample is accepted (see Listing 2). Upon acceptance,
we halt the traversal and return the color value (discarding
the “w” component). We utilize an accumulation buffer to
allow convergence over multiple frames.

Listing 2: Implementation of rejection scheme via null colli-
sions

bool nullCollision(float majorant, float density){
return (density < randFloat() * majorant);}

We identify several meaningful approaches to achieve
this. They differ in implementation; however, they ulti-
mately converge to the same image when using the same
parameters.

4.4 Method #1: N-DDA Traversals over
Majorant Grids

One obvious way to approximate Equation 6 is by sim-
ply applying Woodcock tracking for each channel as sep-
arate volumes and choosing the closest sample. This ap-
proach, although not the most computationally efficient,
allows for serializing the rendering of individual chan-
nels by loading volumes and their corresponding transfer



functions one at a time, thereby mitigating memory con-
straints. It can be utilized for an out-of-core implementa-
tion. Moreover, this provides a good baseline for compar-
ison and can be viewed as an initial step in understanding
the multi-channel Woodcock tracking.

Woodcock Traversal
—OClosest Sample
—UORejected Sample

Majorants
4 Channel |

1 Channel Il
A Channel Il

=P DDA Steps

48> Null Collision

Fig. 6: The Woodcock tracking process with three DDA traver-
sals across three majorant grids from a perspective of one ray:
Starting from channel I, a DDA traversal is initiated, and be-
tween each DDA step, Woodcock steps are taken where null
collisions are discarded. These processes are repeated until a
sample for each channel is found. The closest sample among
the three channels (channel II) is accepted, and the others (I and
III) are rejected.

For this approach, we build majorant grids for each
channel where the maximum density for a group of cells
contained within a macrocell is stored. The majorants are
recalculated every time a TF is edited.

The rendering process, illustrated in Figure 6, involves
applying Woodcock tracking to all N channels using their
respective majorant grids. Specifically, for a given chan-
nel Cp, we perform a DDA traversal over the majorant grid
My. Within each cell of My, Woodcock steps are taken
using the majorant my ;, where i corresponds to the 1D in-
dex of the current cell of My, for the ray position. The
DDA traversal and steps within are repeated until we en-
counter a real collision. Upon hitting a particle, we record
the distance (fp) and color for Cy. This entire procedure
is then repeated for Cy,Cs, ..., Cy, utilizing their respec-
tive majorant grids M, M, ..., My. Once we complete
iterations through all channels, we select the closest sam-
ple — min(ty,1,. .. ,t,,...,ty). One obvious optimization
we apply to this approach is early termination of the ray
traversal for the channel C,. | if #,,1| surpasses the closest
hit distance, ty;, for channels between Cy-C,,, as it would
have been discarded in the final stage anyway. C-style
pseudo code for this method is shown in Listing 3.

Listing 3: Multi-channel Woodcock tracking using N DDA
traversals

void nDDAMultiChannelWoodcock (
Ray ray, HitRecord& hit, int N){
hit.t = FLT_MAX;
for(int n = 0; n < N; n++){//do N DDA traversals
DDA dda(ray) ;
int cellID = dda.curCell();
do{//DDA traversal
float t = dda.cellEntryT();
float maj = majorants[cellID * N + n];
while(true){//Woodcock steps in the cell
t += woodcockStep(maj);
if(t > hit.t){//a closer sample exists?
dda.stop();
break;//No need to sample
}
if (!dda.InCurCell(t))//bounds check
break;//go to the next cell
float scalar = volumeAt(ray.org
+ ray.dir * t, n);
//scalar’s color (r,g,b) and density (a)
float4 sample = trFunc(scalar, n);
//null collision check n-th channel
if ('nullCollision(maj, sample.a)){
//Return the color, discard the "a"
hit.color = float3(sample);
hit.t= t;
dda.stop(); break;//stop this traversal
}
}cellID = dda.nextCell();
}while(!dda.shouldStop()); } }

4.5 Method #2: One DDA Traversal over
Majorant Grids

The next logical step on top of the method presented in
subsection 4.4 is using a single synchronized DDA traver-
sal over N channels to prune to-be-discarded samples ear-
lier.

The data structures employed remain consistent with
those in subsection 4.4, featuring majorant grids for each
channel, which update upon modification of the transfer
function.

The rendering commences with a singular DDA traver-
sal over the majorant grid. Multiple Woodcock steps are
taken within each majorant cell for each channel until ei-
ther a sample is accepted or all of the rays leave the cur-
rent majorant grid cell. Similarly to the method in List-
ing 3, we pick the closest sample to the ray origin if there



are multiple hits within a majorant cell. In other words,
the outer for-loop iterating over N channels in Listing 3 is
placed inside the DDA traversal.

Woodcock Traversal
—OClosest Sample
98> Null Collision

Majorants
i Channel |
1 Channel Il
A Channel Il

== DDA Steps

Fig. 7: The Woodcock tracking process with a single DDA
traversal across three majorant grids from a perspective of one
ray: A DDA traversal is initiated, and between each DDA step,
three Woodcock traversals are initiated in the order of channels
I, II, and III. The processes are repeated until a sample is taken
(by channel II in this case). We let a final round of Woodcock
traversal run for channel I1I as it could find a closer sample. Only
the closest sample from channel II is accepted.

By synchronizing the N Woodcock tracking steps into
one DDA traversal, we potentially reach the closest sam-
ple sooner and with fewer iterations (compared to subsec-
tion 4.4). Also refer to Figure 7 for an illustration of this
method and Listing 4 for a streamlined kernel code.

Listing 4: Multi-channel Woodcock tracking using a synchro-
nized DDA

void syncDDAMultiChannelWoodcock(
Ray ray, HitRecord& hit, int N){
DDA dda(ray);
int cellID = dda.curCell();
hit.t = FLT_MAX;
do{//do a DDA traversal
for (int n = 0; n < N; n++){//for channels...
float maj = majorants[cellID * N + n];
float t = dda.cellEntryT();
while(true){//Woodcock steps in the cell
t += woodcockStep(maj);
if(t > hit.t || //a closer sample exists?
!dda.InCurCell(t))//bounds check
break;//go to the next channel/cell
float scalar = volumeAt(ray.org
+ ray.dir * t, n);
//scalar’s color (r,g,b) and density (a)
float4 sample = trFunc(scalar, n);
//null collision check for n-th channel
if (!nullCollision(majs[n], sample.a)){
//return the color, discard "a"
hit.color = float3(sample);

hit.t= t;
//regardless of there is a closer
//sample or not we need to stop DDA
dda.stop();
break;//go to the next channel/stop
}
}
}// no channel was selected: null collision
cellID = dda.nextCell();
}while(!dda.shouldStop()); }

4.6 Implementation of Additional Effects

We can incorporate effects such as shadows and surface
shading from proxy geometry into our method at a rela-
tively low cost per ray. These effects are especially valu-
able because they reveal depth cues and structural details
that may not be obvious from emission—absorption alone.
Extending some of these effects to multiple channels is
straightforward.

For volumetric shadows, the process is simple: once a
real collision is found, we cast a shadow ray toward the
light source. This ray is tracked through the multi-density
volume until it either collides or exits. If the shadow ray
collides with any channel, the original point is treated as
fully shadowed, receiving only ambient light (refer to Fig-
ure 9).

For shading, we adopt a basic Blinn—Phong model [53]
with normals computed via central difference gradi-
ents [10]. This is common in many single-channel vi-
sualization software [11, 54]. In multi-density Woodcock
tracking, after a real collision in channel n, we sample the
same channel at six neighboring positions to compute the
gradient, which then serves as the normal for shading (see
Figure 10).

Human perception can differentiate and identify mate-
rials [55] visually. Since our application focuses on multi-
ple fields, we can also assign different material properties,
such as diffusivity, specularity, or shininess, to each chan-
nel alongside the transfer functions. This per-channel ma-
terial shading system can allow better separation of fea-
tures that belong to different channels. The Figure 11
shows our per-channel material shading system over a
view of the Miranda dataset.
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and “1-DDA MDWT” from subsection 4.5. Each method is evaluated under four rendering configurations: Emission+Absorption
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The split images in the second row show individual channels (with shadows) on the top halves and multi-channel visualization
(with both effects) in the bottom halves.

illuminated

Fig. 9: Illustration of volumetric shadows in multi-density
Woodcock tracking: one ray reaches the light source (illumi-
nated), while the other is blocked by a different channel (shad-
owed).

Channel[2].material

=1

O null-collision
@ real-collision

Fig. 10: Illustration of the per-channel material shading process:
after a ray—volume collision, the light vector Lis computed, a
surface normal 7 is approximated via central differences using
six (&) offset samples from the hit channel, and Blinn-Phong
ihading is calculated from the channel’s material properties with
L and 7.

Fig. 11: Side-by-side comparison for our per-channel material
shading: left, all channels are shaded with the same material
properties; right, each channel utilizes distinct material proper-
ties.

5 Results and Evaluation

In this section, we evaluate the impacts of macrocell res-
olution (subsection 5.1), the number of channels (subsec-
tion 5.2), the trade-off between quality and performance
(subsection 5.3), and the choice of blending functions, in-
cluding our proposed method and prior alternatives (sub-
section 5.4). We also present feedback from domain ex-
perts on our method (subsection 5.5) from a series of
semi-structured interviews.

We utilize a variety of datasets to drive more extensive
conclusions. NASA DYAMOND ROI (region of interest) is
the Strait of Gibraltar from the NASA DYAMOND ocean
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data that is in 1400 x 1600 x 350, NYX is a cosmological
simulation that is in 512 x 512 x 512 resolution, Hurri-
cane is a weather simulation that is flatter in the z dimen-
sion with 500 x 500 x 100 resolution, Miranda is a hydro-
dynamics simulation with highly overlapping features in
256 x 384 x 384 resolution and, Zebrafish is a well-known
multi-channel microscopy dataset in 640 x 640 x 121 res-
olution [56].

We run our experiments on an NVIDIA RTX4090 GPU
with the renderer we implemented in CUDA. We take the
average timing of 500 frames for each data point after ren-
dering 50 warm-up frames, which are excluded from the
average.

5.1 Impact of Macrocell Resolution

The macrocell and majorant grids’ resolution directly im-
pacts our method’s performance, as these grids approx-
imate density at query points. This approximation in-
fluences the Woodcock step size and collision probabil-
ities. A finer grid improves stepping and reduces null col-
lisions but requires more memory, whereas a coarser grid
increases null collisions, and thus the time per ray [57].
In this section, we evaluate the performance of our two
multi-density Woodcock tracking methods from section 4
across different macrocell sizes.

We measure the rendering times of each algorithm us-
ing the emission+absorption (E+A) model, E+A with gra-
dient shading [10], E+A with shadows, and E+A with
both effects.

Four channels of NASA DYAMOND ROI, NYX, Hur-
ricane, and Miranda, and three channels of Zebrafish are
used for this experiment. Figure 8 shows the render times
vs. decreasing macrocell resolution. For each data point,
we start with the finest possible macrocell resolution, and
subsequently, we insert twice as many cells per dimension
within a macrocell, i.e., 8 x less resolution. We record
170, 291, 504, 453, and 686 frames per second (FPS) for
NASA DYAMOND, NYX, Hurricane, Miranda, and Ze-
brafish datasets. Our fastest timings with volumetric shad-
ows are 118, 178, 286, 299, and 577 FPS, respectively.
Lines with gradient shading closely follow their unshaded
counterparts, as the effect involves only six low-cost tex-
ture lookups at the collision point and results in an aver-
age increase of 0.9% in render time. We also report the
memory consumption of our application using the most
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performant data macrocell resolution in Table 1.

We observe that method #2 from subsection 4.5 with
1-DDA traversal achieves the highest frame rates. For
both methods, the performance peaks around 64 cells per
macrocell (4 x 4 x 4) for almost all datasets. We record
the memory consumption of our data structures to be be-
tween 0.58-4.69% of the original data sizes at the peak
performance.

We also tested a third method that uses a single ma-
jorant buffer, summing all majorants into one value and
testing each sample against the cumulative majorant. The
idea was to reduce the number of steps, but the results
were negative. This method achieved only 59.88-84.03%
of the performance of our fastest method and required
about 8x the macrocell size, consuming more memory.
Consequently, we omit this method and its results. No-
tably, this approach converges to a technique described in
the overlapping volumes chapter of Fong et al. Production
Volume Rendering course [27].

5.2 Performance Impact of Multiple Chan-
nels

The number of channels is one of the factors that can
significantly increase the cost of algorithms such as ray
marchers. Therefore, we document the performance of
our methods against the increasing number of channels.
We use a standard ray marcher as a baseline in these
experiments. To closely mirror the behavior of out-of-
the-box visualization solutions, we use the common mix
blending function with equal weights for the ray marcher.

Figure 12 depicts the performance of our two methods
and the aforementioned ray marcher against the increas-
ing number of channels. The ray marcher and our meth-
ods are configured to produce similar-quality images us-
ing the same transfer function and scene configurations.

We artificially amplify the channel counts of four of
our datasets by duplicating the same channel data with
different transfer functions, allowing for testing at higher
scalability. Unlike the others, the Hurricane dataset con-
tains 12 unique channels, so we use it as is. However,
with NASA DYAMOND ROI, we only use six channels
due to memory constraints.

Our most efficient method (subsection 4.5) can render
12 channels simultaneously, equivalent to rendering ap-
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Fig. 12: The average rendering times in milliseconds (lower is better) versus the increasing number of channels across five datasets.
For each dataset, the top row shows a line plot comparing “N-DDA MDWT (Multi-density Woodcock Tracking)” from Figure 6,
our “1-DDA MDWT” method from subsection 4.5, and “Ray Marcher-Mix,” a ray marcher using mix blending. Each of our
methods is evaluated under four rendering configurations: Emission+Absorption (triangles), central difference gradient shading
(circles), volumetric shadowing (squares), and both effects combined (diamonds). The bottom row presents the corresponding
visualizations: individual channels on the left and all channels combined with multi-channel Woodcock tracking on the right.

proximately ~ 4 — 8 channels sequentially with volumet-
ric shadows. Adding more channels creates occlusion,
hiding previously visible layers; our multi-density Wood-
cock tracking algorithm exploits this fact and terminates
on the first hit, yielding amortized timings. In contrast,
ray marching collects partial opacities along the ray direc-
tion, leading to a linear traversal cost. The mix operator
must also blend N colors, introducing another linear cost,
causing ray marching to scale linearly with the number of
channels.

We observe some rapid changes in the performance
trend, especially noticeable in NYX between 8 and 10
channels (see Figure 12). This spike is upward, indicat-
ing a loss of performance. Although channels 8-10 are
more occlusive, they do not improve performance because
each volume occupies a large portion of the space with-
out overlapping significantly. This non-overlapping space
consumption causes the majorant grids to become denser
and less adaptive, which in turn causes our algorithm to
halt more often to check for collisions.

The NASA DYAMOND ROI exhibits nearly constant
scaling with our methods, despite the increasing number
of channels. This can be explained by its shallow shape,
where data is large on X and Y but has comparatively less
depth in the Z axis; therefore, amortization from occlu-
sion happens even faster in this test case, as features are
more condensed. We also observe Ray Marcher bene-
fiting from early ray termination in this dataset. Never-

theless, the introduction of a more transparently adjusted
channel immediately creates ~ 17% performance penalty
as seen in the 6 data point.

Our N-DDA multi-density Woodcock tracking (method
#1 from subsection 4.4) does not obtain as much amorti-
zation from occlusion as the 1-DDA multi-density Wood-
cock tracking (method #2 from subsection 4.5) does, de-
spite using the same data structure. From our observa-
tions, this outcome can be explained by the increasing
number of redundant traversals since this method does not
prune some of the redundant traversals that are pruned in
method #2 as explained in subsection 4.5 and seen in Fig-
ure 7.

Table 1: Memory consumption of our implementation. The
columns report the consumption for the specified number of
channels. “Base” shows the memory allocated for the dataset;
for the macrocells and the majorant grid, the consumption for
the best-performing resolution is reported.

Dataset\ Memory (MB) Base Macrocells Majorants Total
NASA ROI (4 channels) 2990.00 375.98 187.99 3553.98
NYX (4 channels) 2048.00 64.00 32.00 2144.00
Hurricane (4 channels) 381.47 11.92 5.96 400.35
Miranda (4 channels) 576.00 18.00 9.00 603.00
Zebrafish (3 channels) 567.15 2.19 1.01  570.35
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5.3 Quality vs. Performance

Woodcock tracking enables one sample per ray, allowing
frames to accumulate and gradually reduce variance. In
contrast, ray marching employs an analytic solution that
takes multiple partial samples per ray, resulting in images
with virtually no variance, albeit at a significantly higher
cost (as shown in Figure 12).

This is indeed a trade-off between per-frame perfor-
mance and noise. To evaluate the cost-efficiency of our
method, we conduct “similar performance” and “‘simi-
lar quality” experiments using the NYX and Miranda
datasets, as seen in Figure 13. First, we compare the ray
marcher’s performance to our 1-DDA MDWT in similar
quality setups. We find 16 samples per pixel(spp) to yield
visuals of similar quality to the ray marcher sampling at
the Nyquist rate (to avoid aliasing artifacts). Next, we fix
our method’s parameters and compare its performance to
the ray marcher by linearly increasing the sampling inter-
val from the artifact-free Nyquist rate to the point where
both methods perform similarly.

Our results show that the ray marcher can achieve high-
quality images in less time, particularly with the NYX
dataset, which reaches a similar quality image ~ 3x
faster. However, similar quality is achieved at around the
same frame rate in datasets with more empty space, like
Miranda. In the ”similar performance” benchmarks, ray
marcher images rendered with sampling intervals larger
than the Nyquist rate exhibit significant aliasing artifacts,
obscuring features. This explains the drastic variations
seen in RM-Mix images in Figure 13, where undersam-
pling leads to severe drops in quality. Unlike our Monte
Carlo-based solution, ray marching cannot improve im-
age quality incrementally. Additionally, increasing spp
in our method incurs a linear cost while reducing the ray
marcher’s sampling interval scales nearly exponentially.
Our approach maintains higher interactivity without re-
quiring the highest spp from the start.

5.4 Visual Comparisons for Blending Func-
tions

We compare the visual results of various inter-channel
blending operators over three datasets in Table 2, using
HLIP and Peak Signal to Noise Ratio (PSNR). We use
four flat colormaps: red, green, blue, and white. In these
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experiments, we compare an image-space method, two
not physically based blending functions, to our physi-
cally based density blending function. These are post-
render compositing and mixing with equal weights from
Fluorender[9] and maximum intensity projection (MIP)
from Rice and Schulze[5].

Our results indicate the post-render compositing offers
the least physically correct result and the farthest image
in terms of difference. Although this mode is intended
to offer another way to examine the data, it makes denser
datasets such as NYX, and Hurricane harder to distinguish
as both the colors and depth relationships are altered.

The mixing function has the unique property of blend-
ing colors into a mixture of two colors. However, this
can be counterintuitive to untrained users, as these colors
may be outside the current set of colormaps, or they may
be confused with other fields if the color is present in a
colormap. This effect is more pronounced in the Hurri-
cane dataset, where reds and blues turn into magenta (not
a color in the colormap set).

Upon reviewing the experiments in subsection 5.2 and
subsection 5.4, we notice that visual clutter becomes more
pronounced as the number of channels increases. Beyond
five channels, the blending colors may start appearing
counterintuitive. Additionally, employing blending func-
tions that generate out-of-colormap colors like mix can
exacerbate this problem, potentially leading to confusion
between a field and overlap of the other two fields.

The results closest to our blending function are from
MIP, as it always selects the same maximum opacity sam-
ple as ours. However, this approach can lead to the loss of
semitransparent regions due to the sharp cut-off of max ().

When tested on the Zebrafish dataset, the mix and max
functions show minimal differences from our approach.
In contrast to simulation data, where features cluster in
specific regions, the microscopy data exhibit less over-
lap between channels. This reduced overlap leads to
less color blending, resulting in similar outcomes across
blending modes.

The density-based blending function offers an intuitive
way to blend colors, as it can blend colors through more
neutral tones while preserving the information of more
transparent regions, avoiding sharp cut-offs. It remains
physically based as it stems from the direct extension of
Woodcock tracking sampling to multiple channels.



Table 2: Visual comparisons of inter-channel blending functions over test datasets: Direct volume renderings using Emis-
sion+Absorption model with identical parameters for various blending functions, accompanied by heat map images depicting
the difference to our physically motivated density-based blending function using HLIP metric[58]. The overall mean difference and
PSNR to density-based blending are also reported under the heat maps.
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Blending |
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Fig. 13: Similar quality (left) and performance (right) benchmarks for two datasets. The similar quality images display slices
rendered with our Multi-Density Woodcock Tracking (MDWT) at increasing samples per pixel (spp), while the bottom-right half
shows the ray marcher using mix blending with half of the minimum cell size as the sampling interval (Nyquist rate). The similar
performance images show slices rendered with the ray marcher and mix blending (RM-Mix) for increasing sampling intervals, with
the bottom-right half showing the same scene rendered by MDWT at 1 spp. The rendering time for each slice is indicated on the left
side of each image, and each image is accompanied by a line plot of the average rendering times in milliseconds (lower is better).

5.5 Domain-Expert Evaluation

To evaluate the practical relevance of our approach, we
conducted semi-structured interviews [59] with four do-
main experts, each from a different scientific field. All
participants provided informed consent before the inter-
views. One expert specialized in chemistry with a fo-
cus on quantum optics, another in pharmaceutical sci-
ences with a focus on bio-molecular interactions, a third
in physics with a focus on fluid dynamics, and the last
in computer science with a focus on data compression.
During the interviews, we used datasets familiar to the
experts, along with their standard visualization tools —
either Vislt [11] or Napari [50]. These tools were first set
up in meaningful visualizations, after which we recreated
the same scenes in our renderer for side-by-side compar-
ison. This setup allowed us to assess how conventional
solutions handle multi-channel data and to discuss the po-
tential benefits and limitations of our method.

The datasets shown to the chemistry and pharmaceuti-
cal experts are presented in Figure 14 and Figure 15, re-
spectively. For the physics and computer science experts,

we used the Miranda dataset from our earlier evaluations.
In each session, we compared results from the experts’
existing workflows with those produced by our renderer.
We then solicited feedback on usability and clarity. We
asked participants to reflect on whether they would adopt
our method if it were properly deployed into their work-
flows.

Across the interviews, several themes emerged, high-
lighting key advantages of our method: (i) accurate ren-
dering of both color and depth (a limitation in Napari),
(i) clear visualization of feature interactions across chan-
nels, (iii) correct channel ordering without occlusion arti-
facts (a limitation in Vislt), and (iv) improved 3D percep-
tion.

The chemistry and pharmaceutical experts shared sim-
ilar workflows, relying on Napari to visualize microscopy
data. Both noted that Napari’s use of MIP and addi-
tive rendering compromises depth and color accuracy, re-
sulting in“flat” results that also cannot render shadows
and other depth cues. In contrast, our renderer pro-
vided shading and depth cues that clarified interactions
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Fig. 14: E. coli perfusion visualizations as used in our expert
study: left is visualized with Napari, and right is rendered with
our MDWT.

Fig. 15: Visualization of interacting Macrophage and E. coli
cells as used in our expert study: left is visualized with Napari,
and right is rendered with our MDWT.

between structures. The pharmaceutical expert even iden-
tified elements initially assumed to be errors, which later
proved to be genuine shapes formed during data acqui-
sition—details that were difficult to discern with Napari.
While both experts acknowledged that transfer functions
remain challenging to use (a challenge to be addressed
by the visualization community [42, 39]), they found that
our method reduced the need for extensive parameter tun-
ing to reveal feature boundaries. Finally, both emphasized
the importance of examining multiple timesteps in their
workflows and suggested extending our method to time-
varying data.

The physics and computer science experts, both Vislt
users, highlighted additional contrasts between their pre-
ferred tool and our method. They agreed that incon-
sistent multi-channel ordering is a known limitation of
Vislt, which does obscure important relationships be-
tween channels (and sometimes the entire channel). In
contrast, our method accurately overlays channels regard-
less of the loading order. The physics expert stated that
our method’s ability to reveal inter-channel correlations
could be helpful in their analysis. Both experts utilized
this advantage in the example of the Miranda dataset,
which allowed them to observe that regions of high ve-
locity along the z-axis overlapped with areas of higher
density—revealing the fluid mixing process captured in
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the data. The physics expert noted that they would uti-
lize this feature if it were integrated into a tool like Vislt,
emphasizing its potential practical value.

6 Discussion and Conclusion

In this paper, we presented an efficient method for ren-
dering multiple volume channels by extending the Wood-
cock tracking algorithm to handle multiple densities. We
explored two approaches: an intuitive method (subsec-
tion 4.4) using N serial traversals to find the closest sam-
ple and a more performant method (subsection 4.5) that
combines N traversals into one for fewer steps. Addition-
ally, we introduced a Monte Carlo estimator for a physi-
cally motivated inter-channel blending function. We gen-
eralized the framework to support other blending func-
tions, including user-weighted blending and maximum in-
tensity projection.

Our most efficient method achieved real-time frame
rates for multi-channel rendering by leveraging occlu-
sion to terminate traversal upon sampling. Unlike ray
marching, which struggles with interactivity when casting
shadow rays, our approach samples and casts shadow rays
for a single sample without performance penalties. While
initial frames exhibited variance, the results quickly con-
verged to high-quality visuals within 20-30 ms. Despite
producing initial noise-free images, taking fewer samples
to increase the performance is not an option for the ray
marcher, which results in aliasing artifacts.

We proposed a density-based blending approach that
avoided the pitfalls of opacity and compositing methods,
producing distinct results without out-of-transfer-function
colors. It required no complex interfaces, handled occlu-
sion with many opaque channels, and unified prior blend-
ing functions, allowing users to choose blending based on
their needs, such as weighted mixing for correlation dis-
covery or MIP for emphasizing dominant features.

A vital discussion is the impracticality of residual ratio
tracking methods [36, 12] in the sci-vis context due to how
color information is derived. Unlike cinematic rendering,
where RGB-classified data can be treated as separate vol-
umes with dedicated majorants, sci-vis applies a transfer
function to a single volume. Storing per-color-channel
majorants is inefficient using uniform grids— which often
outperform hierarchical structures in traversal and update



performance [35] — as this would incur significant mem-
ory overhead if replicated for each transfer function chan-
nel. Moreover, integrating minorant-based optimizations
is unsuitable as the analytically solvable control compo-
nent of extinction (alpha) and emission spectra (the RGB)
can differ for the same transfer function.

This work suggests several potential avenues for future
research. In subsection 4.2, we introduced a framework
for defining new blending functions, which could be ex-
panded through another user study and investigating novel
functions. Attribute-aware radial basis functions [33] of-
fer a promising multi-channel blending strategy. The po-
tential of the N-DDA method (subsection 4.4) to reduce
memory contention in out-of-core use cases could also be
explored. Our expert study suggests that incorporating
our method into existing visualization solutions that come
with complementary features, such as 2D transfer func-
tion editors and temporal navigation features, would be a
beneficial future step. One could also investigate intuitive
user interfaces for multi-channel rendering (e.g., multi-
field transfer function design). Additionally, extending
the approach to unstructured meshes using techniques like
those from Morrical et al. [34], as well as research into en-
semble and uncertainty visualization, would be valuable.

Ultimately, our multi-density Woodcock tracking
method provides a performant and versatile solution for
multi-channel volume visualization. Leveraging contem-
porary rendering techniques, our approach produces high-
fidelity images in real-time while offering greater inter-
activity than previous multi-channel sci-vis methods. Its
physically driven blending function preserves colormaps
and depth ordering without complex interfaces, enabling
intuitive, user-focused visualization. These advantages
translate into perceptual benefits, as demonstrated in ap-
plications such as fluid dynamics and cellular microscopy.
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