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Abstract—The massive data generated by scientists daily serve
as both a major catalyst for new discoveries and innovations,
as well as a significant roadblock that restricts access to the
data. Our paper introduces a new approach to removing big
data barriers and democratizing access to petascale data for the
broader scientific community. Our novel data fabric abstraction
layer allows user-friendly querying of scientific information while
hiding the complexities of dealing with file systems or cloud
services. We enable FAIR (Findable, Accessible, Interoperable,
and Reusable) access to datasets such as NASA’s petascale climate
datasets. Our paper presents an approach to managing, visualiz-
ing, and analyzing petabytes of data within a browser on equip-
ment ranging from the top NASA supercomputer to commodity
hardware like a laptop. Our novel data fabric abstraction utilizes
state-of-the art progressive compression algorithms and machine-
learning insights to power scalable visualization dashboards for
petascale data. The result provides users with the ability to
identify extreme events or trends dynamically, expanding access
to scientific data and further enabling discoveries. We validate
our approach by improving the ability of climate scientists to
visually explore their data via three fully interactive dashboards.
We further validate our approach by deploying the dashboards
and simplified training materials in the classroom at a minority-
serving institution. These dashboards, released in simplified form
to the general public, contribute significantly to a broader push
to democratize the access and use of climate data.

Index Terms—Large Scale Data Management, Data Visualiza-
tion, Petabytes, Climate Data, Web-based Visualization, Machine
Learning Insights, Dashboards, Volume Rendering.

I. INTRODUCTION

W ITH the continuous generation of petabyte-scale
datasets on a daily basis, effective analysis and visual-

ization are essential to deriving meaningful insights. Leading
scientific institutions, such as NASA, play a pivotal role in
producing and managing these vast data resources. Although
significant resources are poured into making it accessible
(e.g. NASA’s DYAMOND and ECCO data [1], [2]), inherent
challenges persist including: the difficulty accessing the data,
the limitations in computational power, and the need for
real-time processing capabilities. Downloading petascale data
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locally is problematic due to limitations of local memory
or disk size and insufficient bandwidth for remote disks [3].
Our work focuses on collaboration with these institutions to
improve data accessibility, empowering researchers to unlock
newer insights within these vast datasets.

Researchers and scientists often want to ask conceptually
simple questions on time-series data and slices of volumes.
Scientific data visualization on petascale datasets can require
up to hundreds of GPU and CPU core hours, requiring hours of
waiting in a queue at a busy center. Typically, static visualiza-
tions are generated for a selected time range, scalar, region,
and resolution, limiting the ability to interactively view the
data. Researchers may also need to interactively analyze large
datasets, which is difficult with traditional static visualization
methods that limit the ability to ask real-time questions and
perform on-the-fly analysis. Other technical challenges for big
data in domains like climate science include migrating code,
analytic products, and large repositories within the growing
network of storage and computational resources [4].

Our collaboration with domain scientists and visualization
experts has helped to create novel interactive visualization
dashboards for petabytes of data with progressive loading and
decoupling of the storage infrastructure in order to increase
data democratization. Our specific contributions include the
following:

• A novel data fabric abstraction layer that allows users
to request information based on their scientific needs
without dealing with the low-level file format specifica-
tion or network limitations. To mitigate the increasing
complexity and volume of data, our data fabric abstrac-
tion is built with FAIR (Findable, Accessible, Interop-
erable, Reusable) principles in mind. Our FAIR Digital
Objects (FDOs) layer responds to user requests within
the specified quality / resource bounds or notifies that the
request may need to be revised (e.g., reducing quality or
increasing resources).

• Efficient Data Reorganization, Conversion, Reduc-
tion/Optimization pipeline that allows efficient storage
and data transfer by utilizing compression strategies for
data. Transforming data into an Analysis-Ready Cloud-
Optimized (ARCO) friendly format significantly reduces
computational load and storage requirements.

• Scalable Visualization Dashboards enable progressive vi-
sualizations of petascale data with advanced analytical
tools and a user-friendly design, encouraging scientific
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Fig. 1: Our novel data abstraction framework allows a scientist to express a query for the information needed with additional
parameters, such as the quality required to achieve a trustworthy result and/or the maximum amount of resources available
for its execution. Our Data Fabric Abstraction (middle) handles the query and builds the Uniform Resource Identifier (URI).
The FAIR Digital Object (FDO) provides the information necessary for an implementation that optimizes the execution of the
query (middle). The low-level execution (right) will use the available networking and storage resources, including different file
formats and storage models (file systems, object storage, or block storage), as needed.

curiosity and discovery.
• Integration of Machine Learning-Powered Insights into

specific dashboards for real-time anomaly detection and
interactive analysis of climate data. We leverage a Con-
vLSTM2D [5] model to dynamically identify spatiotem-
poral anomalies in climate simulations, enabling users to
uncover trends, extreme events, and deviations for more
informed scientific exploration.

• Data Democratization via publicly accessible web links
to over a petabyte of cloud-optimized data, enhanc-
ing accessibility and collaboration. Our approach allows
undergraduate students in a minority-serving institution
to use in their exercises the same petascale dataset as
NASA scientists on their largest supercomputer, seeking
to advance access to scientific data and discoveries.

We demonstrate our approach through dashboards available on
supercomputers and servers, both accessing publicly available
data from cloud storage. We evaluate our dashboards through
four use cases: 1) petascale visualization of multiple variables
with 1.1 PB data from the cloud; 2) studying relationships
between oceanic and atmospheric variables, such as how sea
surface temperature affects the formation of ice, water, and
clouds in the atmosphere, using cloud-served data; 3) machine-
learning powered insights on a 38 TB daily climate simulation
spanning 150 years; and 4) demonstrating how enabling FAIR
data opens the doors for underserved communities to access
data previously out of reach. We examine performance, discuss
lessons learned, and review the intellectual merit and societal
benefits of our novel approach for petascale data visualization
and analysis.

II. RELATED WORKS

Visualizing large-scale data directly from a web environ-
ment provides unprecedented access to information. The abil-
ity to process and render complex datasets from a web browser
offers unique advantages in efficient analysis, accessibility, and
data management. The shift toward browser-based visualiza-
tion tools enables users across various disciplines to access

and interact with information in real-time without the need
for specialized hardware or extensive software installations.
As interest and demand for web-based visualization grows,
researchers and developers have developed a variety of frame-
works, libraries, and methodologies to address the inherent
challenges associated with rendering large-scale datasets in a
browser environment.

A. Large-Scale Web-based Visualizations

The most popular web-based visualization libraries today
include D3 [6], popular for its ability to directly manipulate
and transform the content within its document object model
(DOM). Several other libraries leverage WebGL to handle
large-scale data visualizations efficiently and with high per-
formance directly within a browser. WebGL enables these
libraries to provide rich, interactive, and 3D visualizations
using the GPU for graphics rendering. Among these are
libraries Deck.gl [7], Luma.gl and Three.js [8].

Visualizing large-scale datasets from a browser has been
previously researched. Usher et al. [9], [10] developed an
isosurface computation algorithm for block-compressed data
to visualize a terabyte of scientific data from a browser.
We have far exceeded this by creating a framework that
can visualize more than a petabyte of data from the cloud.
Alder et al. [11] developed USGS National Climate Change
Viewer to visualize 17 terabytes of climate projection data
from compressed NetCDF-4 files and preprocessed the data
for statistics instead of computing them on the fly. Walker et
al. [12] worked on 50 MB of geospatial data at once, mention-
ing a browser limitation that caused excessive latency. Other
tools, such as ParaViewWeb [13], perform data processing and
rendering on the server side and stream the results back to the
client. Mohammad et al. [14] deployed efficient and affordable
scientific visualization as a microservice, but noted challenges
with inconvenient network latency and costly egress costs.
However, none of these systems have been capable of working
with petascale datasets.
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A framework developed by Lu et al. [15] allows on-the-fly
visualization of the multiscale climate datasets but remotely
uses cloud services to provide big data processing ability.
Ravindu [16] describes loading data into memory as one of the
key challenges of visualizing data from a browser. To tackle
these challenges, tools such as Firefly [17] use progressive
rendering techniques on a 250GB dataset to visualize from a
browser. Other challenges mentioned by Khadija et al. [18]
include scalability and high-performance requirements for big
data analysis and visualization.
B. Climate-specific Data Visualization Tool

Some existing tools, such as Ultrascale Visualization Cli-
mate Data Analysis Tools (UV-CDAT) [19], support data
gridding and exploratory data analysis, but require users to
download sophisticated packages. A Python-based tool called
CCPviz developed by Aizenman et al. [20] provides a data
processing and visualization module for climate data. How-
ever, the CCPviz architecture is inefficient for petascale data as
it requires transferring all selected data between the different
layers of their architectures. Sun et al. [21] developed a web-
based visualization framework for climate data using Google
Earth by precomputing all images on the local server and
mentioned that on-the-fly data access from remote servers is
slow and impractical.

A Web analysis platform called ClimateCharts.net devel-
oped by Zepner et al. [22] focuses on the general interactive
features of the data, but had issues due to the lack of com-
putational resources and network latency. Another framework
developed by Wong et al. [23] enabled interactive visualization
of large-scale scalar and flow field data but required significant
data downsampling to make their workflow run on the desktop
computer. Other challenges mentioned by Wong et al. [24]
include being dependent on in-situ data analysis, lack of
interaction, visualization techniques, and limited community
involvement.

Several implementations endeavor to make the NASA Cli-
mate data easier to access [25]–[28]. Such methods require
users to access libraries designed to make the data accessible.
Still, the ability to slice vertically or horizontally interactively
requires manual installation of complex libraries or additional
expertise. Scientists and developers have created libraries like
xmitgcm [29], [30] to handle these issues for petascale NASA
datasets, but they still lack the interactive features that many
climate scientists desire. Other tools developed at NASA, such
as Podaac [31], provide near real-time (NRT) access to some
data products but do not give users the flexibility to change
the range, colormap, and other utilities such as slicing the
data, helpful in navigating the depths of the data. Ellsworth et
al. [32] developed a visualization environment for petabytes
of data using the hyperwall, a display wall with 128 displays,
and associated computing clusters. Whereas high-resolution
displays and custom software allowed one to quickly view
large amounts of data, this unique system was restricted to
scientists who could secure an invitation to the facility.

C. Data Reorganization using OpenVisus
Many scientists need help dealing with massive datasets due

to hardware limitations, slow data movement, and I/O bot-

tlenecks. Among other technologies, we use OpenVisus [33],
[34], an open source out-of-core data management framework
designed to address these issues through data reorganization
and multi-resolution access. OpenVisus uses hierarchical Z-
order space filling curves to encode spatially coherent access
patterns in storage, optimizing both spatial locality and disk
access patterns [35]. Data are stored in IDX format, which par-
titions data into multiresolution blocks organized by resolution
and precision levels. This structure enables efficient subsetting,
downsampling, and progressive streaming, allowing scientists
to interactively query only the data needed for a specific task.
The IDX format and OpenVisus API, recognized for its fast
and progressive data streaming functionalities, support fast I/O
of petascale simulations [36], [37] as well as post-hoc querying
and visualizing petascale data in various scientific applica-
tions [33], [38], [39]. Designed to provide progressive access
for very large datasets, this framework optimally exploits the
existing caching hardware in modern architectures. The cache-
oblivious approach [40]–[42] exploits this structure by storing
large data arrays in a cache-optimized manner. A critical aspect
that will be specialized and optimized, especially for the use
cases presented in this paper, is the ability to progressively
encode the spatial resolution and numerical precision of the
data [43], [44], thus minimizing the cost of data movements
for any data analysis and visualization workflow [45], [46].

We tackle the challenge of working with datasets that are
too large for a system’s memory by utilizing OpenVisus’ out-
of-core computations. We then transform the data into an
Analysis-Ready Cloud-Optimized (ARCO) [30], [47] friendly
format, which means the data is clean and ready for analysis
while also allowing efficient and direct access to data subsets
in the cloud. By leveraging the amount of available compu-
tational resources a user has, our approach smartly transfers
data between the system’s fast but limited internal memory
and external storage options, which offer more space but are
slower. As a result, our framework handles very large datasets
that exceed the system’s memory limits without significantly
slowing down or reducing the effectiveness of data processing.

III. A NOVEL DATA FABRIC ABSTRACTION

We introduce a data abstraction layer that concurrently
addresses the user’s need to access information easily while
being able to control the amount of resources used. Through
the use cases presented in this paper, we demonstrate how
the data abstraction layer aids in visualizing, analyzing, and
sharing petascale climate simulation datasets. We show how
our framework facilitates the use of these massive datasets
for world-renowned climate scientists using NASA’s largest
supercomputer and for undergraduate students in a minority-
serving institution.

Our data fabric abstraction consists of several modules as
shown in Fig. 1 including query, universal resource identifier
(URI), FAIR Digital Object (FDO), and plan modules, as well
as pipelines for data caching, transfer, routing, conversion,
reduction, and security. The data fabric abstraction then relies
on an API to access file, block, or object storage. The storage
formats include ZARR, NumPy, NetCDF, HDF5, GeoTIFF,
and IDX1/IDX2. By building this modular abstraction, we
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Fig. 2: Overview of the integrated framework for climate data analysis and visualization: Our system connects a Dashboard
deployed on either cloud or local servers, providing multi-faceted functionality for climate data exploration. Our framework
includes 2D Visualization and Statistical Analysis, Model Comparison, and Machine Learning (ML) Insights for anomaly
detection and prediction. Users can interactively query and progressively load data stored in optimized formats, run 2D or 3D
visualization, perform general analytics, compare model outputs, and load ML models as required. Additionally, we create a
Custom Volume Renderer to enhance the volumetric nature of datasets with addition of highlights, transparency, and shadows.

can easily add, change, and update any of these black boxes
through a simple API without worrying about cascading issues.

A. Query and URI

Removing the need to manage low-level storage intricacies,
we provide an API to request information at a high level of
abstraction and include a variety of technical requirements.
Typical primary query elements include spatial extent, time
value or range, and variables of interest (temperature, salinity,
velocity, etc.). Queries are specified not with respect to how
the data is stored in a particular file format but in the analysis
coordinate system, similarly to an Xarray API [48]. Although
Xarray is user-friendly, Xarray does not address the problem
of mapping a request to an impractically large amount of
resources. Therefore, we introduce additional parameters that
the scientific community has identified as necessary when
dealing with massive data [49]–[51]. For example, for a
given query, the user can specify the spatial resolution and/or
numerical precision needed to satisfy the scientific needs.
Additional constraints include the maximum cost in egress
fees budgeted for data stored in the commercial cloud or the
maximum delay between query and response. Since it may
not always be possible to satisfy all the requirements, a query
may not return the information requested but indicates that the
conditions need to be relaxed (Fig. 1, middle).

As users make specific requests within the query abstrac-
tion framework, the back-end abstraction uniform resource
identifier (URI) handles query requests, such as data caching,
transfer, routing, conversion, reduction, and security. Each
of these is critical for maintaining performance and data
integrity across different storage types and formats, whether in
block storage, file storage, or object cloud storage. Internally,

queries are resolved through a multiresolution data indexing
structure that uses hierarchical space-filling curves. Based on
query parameters, only the necessary blocks are accessed
and streamed progressively: first coarse resolution, then finer,
based on the display, analysis, or bandwidth requirements.
Flexible back-end logic dynamically selects which resolution
or format to serve depending on query cost, access policy, and
system bandwidth.

B. FAIR Digital Object

To address the complexities of large data distributed across
various platforms and the potential use of different file formats,
we introduce the first advanced FAIR Digital Object (FDOs)
framework [52] implementation, which democratizes access
to data while following the FAIR (Findable, Accessible, In-
teroperable, Reusable) guiding principle [53] [54], illustrated
in Fig. 1. FDOs encapsulate and manage digital content, such
as data, models, or workflows. In general, FDO consists of
the following layers [55]: digital object (data, code, research
outputs), identifiers (unique and persistent such as Digital
Object Identifier (DOI), standards and code (typically open
file formats), and metadata (provenance). Our advanced FDO
includes all the actionable information needed to determine if
and how a given query can be resolved (Fig. 1, middle), as well
as workflows or hints for processing pipelines. FDOs allow us
to abstract resources across our hosting sites, thus fostering
broader access to data and services. We democratize accessi-
bility and scalability by enabling remote usage and efficient
services operation. By integrating FAIR Digital Objects into
our data fabric abstraction, we enable standardized, metadata-
rich, and cloud-accessible data interactions. This is achieved
by embedding relevant metadata, data access instructions, and
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processing workflows within each object. This allows the
system to resolve user queries across storage systems while
ensuring the data remains reusable, interoperable, and ready
for analysis.

C. Storage and File Formats

The last module of the data fabric abstraction includes the
API between the data and the storage. We enhance OpenVisus’
functionality as a cloud and caching data model to accelerate
data processing. In particular, we tackle the challenge of
working with datasets too large for a system’s memory by
utilizing OpenVisus’ out-of-core computations.

Our modules seamlessly exploit file, block, object, and
distributed storage options. File storage functions as network-
attached storage. Block storage offers high I/O performance,
strong consistency, and low-latency connectivity. Object stor-
age guarantees high availability and is durable and infinitely
scalable in the cloud. Distributed storage [56]–[58] is tailored
for long-term scientific research and is immutable, verifiable,
and cost-effective through incentive systems, smart contracts,
and quality of service tradeoffs [59]–[61] (Fig. 1, right).

Our abstraction layers allow transparent data conversion
between many file formats and optimize storage and retrieval
without user intervention. For example, a query for a high-
resolution climate model might be stored in Zarr format in
the cloud but could be automatically converted to a more
compact representation for the user, like GeoTIFF or NetCDF,
if required for analysis.

D. Decoupling Data From Storage

Decoupling data from its storage infrastructure is essential
for achieving longitudinal data access and sharing capabilities.
This separation is crucial because the lifespan of any physical
storage medium is inherently shorter than that of the data it
holds. Given the rapid evolution of technology and business
landscapes, optimal storage solutions can quickly become pro-
hibitively expensive or outdated. Therefore, data repositories
must employ technology-agnostic abstractions that facilitate
hybrid usage and seamless migration, minimizing costs and
disruptions to user access.

Our data fabric abstraction supported visualization frame-
work seamlessly supports: 1) Reading data at varying resolu-
tions within Regions of Interest (ROIs), limiting the result to
the available memory or the maximum number of projected
pixels on the screen; 2) Generating summary videos from
temporal data with specific resolution constraints; the total
number of frames is established depending on the network
bandwidth and the existence of pre-cached data; 3) Writing
multiple versions of data, one for archival at low cost and one
resolution-capped for quick sharing purposes.

Furthermore, user requests can be translated to different
encoding and compression schemes depending upon several
factors, e.g., high-but-slow compression for less frequently
accessed data and low-but-fast compression for frequently
accessed data. Additionally, our framework facilitates data
migration between different storage tiers (hot, warm, and
cold) [62] and enables transparent rerouting of data requests

from local storage to external storage as needed. To make
datasets publicly accessible, we upload petabytes of data after
compression to Open Science Data Federation(OSDF) and
FTH, an S3-API-compatible decentralized cloud storage and
compute service [63].

E. Impact of our Data Fabric Abstraction

Our progressive streaming ability, combined with the cloud-
served data in analysis-ready format, allows the user to access
and visualize large datasets without downloading the entire file
or region. Our frameworks enable convenient remote collabo-
ration and data access with standalone Jupyter notebooks [64]
and dashboards using simple lines of code shown in Fig. 3.
import OpenVisus as ov
dataset="nex-gddp-cmip6"
endpoint="https://atlantis.sci.utah.edu"
url= f"{endpoint}/mod_visus?dataset=/" \

f"{dataset}&cached=arco"

db=LoadDataset(url)
data=db.read(x=[x_min,x_max],

y=[y_min,y_max])

Fig. 3: Simple Python code fragment for accessing data stored
on the Atlantis Server at University of Utah. The result of an
input URL given to the LoadDataset function is assigned to
db. The db.read returns a NumPy array that can easily be used
in Python or Jupyter Notebooks.

IV. DASHBOARDS

We have found that, while generating a simulation for a
given data set and parameters may require hundreds of hours
or more on a supercomputer, viewing those data should no
longer require heavy computation. To solve this significant
gap between fast reading and massive data visualization, we
have integrated a Python version of OpenVisus [33] called
OpenVisusPy [65] with web-based visualization frameworks
such as Bokeh [66] and Panel [67]. These flexible and
interactive widgets support a wide range of visualization
techniques, allowing users to dynamically explore, analyze,
and understand massive datasets with ease. The data streamed
to the browser is a subset of large scientific data, typically in a
2D or 3D NumPy array. Once the data arrive at the client side,
users can perform any type of operation or perform analyses
themselves. The rendering here is performed on the client side,
using interactive Python libraries such as Bokeh and Panel.
An integrated environment enables users to interact with their
data in previously impractical or resource-intensive ways, al-
lowing data-intensive analysis to become more accessible and
insightful. The size of the data transmitted over the network
depends on the dataset and the user’s requested resolution. For
the CMIP6 dataset, users typically view one timestep at a time
using a time slider or playback tool. Each timestep for a single
model, variable, scenario, and day is originally about 3.5 MB,
but after compression, it is reduced to approximately 1 MB
for the full-resolution global region. If the user requests lower-
resolution data, this can be as small as 512 or even 256 KB
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Scene
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NSDF Dashboard for NEX-GDDP-CMIP6 Dataset: Near-Surface Relative Humidity

Fig. 4: A Dashboard accessing almost 38 TB of NEX-GDDP-CMIP6 data with Near-Surface Relative Humidity selected.
Dashboard contains four views in two columns. The first column provides a global view with user selected Zonal Average in
the bottom graph. The right column contains a user selected region with a graph (bottom-right) of average values over time
user selected from 1950 to 1956. Other features are histogram, cumulative density function, and inter-modal comparison.

per timestep. Since users can play through time at a rate of up
to 10 timesteps per second, the total data streamed can scale
to several megabytes per second depending on the interaction.
In contrast, data sets such as the LLC2160 are much larger.
Each full 3D timestep is approximately 29GB uncompressed
and is losslessly compressed to around 8GB. This includes 90
vertical levels, so each level is about 90MB at full resolution,
but can be much lower in size for lower resolutions. When
a user is viewing a 2D horizontal slice, only a portion of
the data is transmitted, which could be a few megabytes per
interaction, depending on screen resolution and zoom level.
OpenVisus encodes the data using hierarchical z-order space-
filling curves, enabling precise and efficient data access [35],
[37]. Thus, when a user interacts with the visualization (e.g.,
slicing through a level), the OpenVisus library [34] sends a
targeted request that retrieves only the necessary slice from
the server or data source. This approach significantly reduces
the amount of data transmitted over the network and allows
fast and responsive interactions.

Our dashboard framework, shown in Fig. 2, provides a
diverse array of features designed to accommodate both casual
explorers and scientific researchers. The user interface of
each dashboard is designed by pulling the modular pieces
of the framework together, including dataset selection, region
of interest extraction, timestep slider, horizontal and vertical

slices, color map/palette, colormap range (user or dynamic),
resolution sliders, playback functionality, and time speed con-
trol, as shown in Fig. 4. The Show Stats button gives users the
ability to view the general statistics of the data such as average
over time, latitudinal average, histogram, and cumulative den-
sity function of the data. Furthermore, the machine learning
(ML) capabilities integrated within the dashboard empower
users to extract actionable insights from their datasets, as will
be discussed in Section VI-B3. The ML insights currently
supported include anomaly detection, temporal trends, and
visualization of deviations from the expected patterns over
the entire region, offering a unique approach to interactive
data science. Users can also upload a custom ML model
before launching the dashboard to extract more value from
the dashboard. By enabling users to apply ML techniques
directly to their data within the dashboard, we bridge the gap
between visualization and computational analysis, significantly
reducing the time and expertise needed for scientific discovery.

Our dashboard represents a significant advancement in the
visualization and analysis of large-scale data, not limited by
the size of the data, the disk space, and the available memory.
It allows multiple interactive windows that show streaming
progressively loaded slices of volume data, graphs of pixel
values through the volume, or macro views of the dataset, as
shown in Fig. 4. By providing interactive tools and features,
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we aim to make complex data visualizations accessible and
insightful to a broad audience, from researchers and scientists
to educators and policymakers.

V. CUSTOM VOLUME RENDERER

Our current dashboards provide a mapping from data to
a 2D color map. We have found that, for some presenta-
tions, imagery of 3D volumetric datasets with increased depth
perception are crucial. Given the volumetric nature of our
datasets, we employed a custom volume renderer to explore
their specific aspects, as shown in Fig. 5. Once a region
of interest has been found, our dashboards allow users to
download a specified region for local rendering.

Our renderer is a GPU-based, ray-traced volume rendering
system optimized to handle large datasets in real-time. It is
built around the physically-motivated Woodcock (Delta) track-
ing principle, which homogenizes volumes using fictitious
particles derived from the maximum density [68]–[72]. Using
this principle the renderer simulates ray-particle collisions by
simplifying the probability calculations. Each ray travels until
it collides with a non-fictitious particle; at this point, a sample
is taken and color-mapped. The probability of a real collision
is given by Preal(x) = σa(x)

σ̄ , where σa(x) represents the
exact density at the point x, and σ̄ denotes the maximum
density. After each collision, the renderer calculates the next
collision distance by simulating the ray’s free-flight distance
using t = − ln(1−ξ)

σ̄ , where ξ is a random number. Subdividing
the volume into smaller sub-regions with tighter bounds often
results in faster ray tracing, a technique we leverage in our
implementation. We take one sample per ray to achieve real-
time rates. To mitigate the noise, we let the image converge
over time by accumulating samples.

We deployed our renderer on a desktop system equipped
with an NVIDIA RTX 4090 GPU to deliver high-quality,
renderings while providing interactivity. Future updates to
our dashboard will include this feature directly within the
interface. Currently, the real-time rendering runs on the client
side only and is used for producing more stunning imagery
after a region of interest has been found in the dashboards.

VI. EXAMPLES

Our framework can work for any petascale gridded dataset
and throughout this paper, we use three large climate simula-
tion datasets: 1) the NASA 1.8 PB DYAMOND dataset [73],
[74], 2) the LLC4320 Ocean dataset [25], [75] and 3) NASA
Global Daily Downscaled Projections CMIP6 dataset [76].

In this section, we provide an overview of the datasets and
describe four use cases that demonstrate mulitvariate petascale
visualization, oceanic and atmospheric variables in a single
dashboard, machine-learning powered interactive insights, and
dashboards for data democratization for teaching.

A. Dataset Overview

The Coupled Ocean-Atmosphere Simulation (COAS) per-
formed at NASA Advanced Supercomputing (NAS) is part of
an international project called “Dynamics of the Atmospheric
general circulation Modeled On Non-hydrostatic Domains” or

Fig. 5: LLC2160 dataset ocean model volume visualizations
(theta/temperature field) in 2560 × 1440 resolution rendered
using our Woodcock tracking renderer with different transfer
function and camera parameters: (a) an overview of the entire
data for a timestep, ≈21 GB, rendered at 180 FPS; (b) a close-
up of cool water flowing from the Atlantic Ocean into the
warmer Mediterranean Sea, rendered at 190 FPS; and (c) a
view of the Cape of Agulhas, highlighting ring-shaped mixing
patterns, rendered at 125 FPS.

DYAMOND. The purpose of COAS is to better understand the
oceanic and atmospheric mechanisms that link air-sea interac-
tions with the Earth’s water cycle and extreme atmospheric
events.

The first dataset, DYAMOND [73], [74], is the simulation
output of research on coupling two models: a global atmo-
spheric model and a global ocean model that were originally
designed to be run separately. The atmospheric model is a
C1440 configuration of the Goddard Earth Observing System
(GEOS) atmospheric model running on a cubed-sphere grid.

Fig. 6: Case 1: Zoomed-in view of the general water circu-
lation through the Strait of Gibraltar connecting the Mediter-
ranean with the Atlantic Ocean using DYAMOND Data.
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The global ocean model is an LLC2160 configuration of
the MITgcm (MIT General Circulation Model) model on a
lat-lon-cap grid, a Cartesian curvilinear coordinate system
approximated with latitude and longitude lines with a cubed-
sphere topology. Each model was run for over 10,000 hourly
timesteps covering over 14 simulation months. Executing this
simulation required almost a full year of computations on
nearly 9,000 cores of the Pleiades and Aitken supercomputers
at the NAS facility [77]. The atmospheric model output has
20 3D and more than 100 2D scalar fields, and the ocean
model output has 5 3D and 15 2D fields. Both models have
3D fields such as temperature, north-south velocity, and east-
west velocity. The atmospheric model includes fields such
as humidity, soil wetness, snow cover, and various variables
of the clouds. The ocean model includes fields of salinity,
sea ice thickness, and freshwater flux, with a total size of
approximately 1.8 petabytes.

Another ocean dataset, LLC4320 [25], [75], from the ‘Esti-
mating the Circulation and Climate of the Ocean’ (ECCO)
project, is the product of a 14-month simulation of ocean
circulation and dynamics using MITgcm model. This sim-
ulation is similar to the ocean portion of the DYAMOND
coupled simulation but was run with half the horizontal grid
spacing (4× the cell count) and with ocean surface boundary
values derived from observations and physical models. The
model output has five 3D and thirteen 2D fields, including
temperature, salinity, three velocity components, sea ice, and
radiation. This massive dataset is 2.8 PB.

A third dataset, NEX-GDDP CMIP6, contains 38 TB of
daily climate simulation outputs spanning 150 years. This
dataset includes variables such as precipitation, air temper-
ature, humidity, and radiation, providing insight into global
climate trends and the impact of anthropogenic factors. Unlike
DYAMOND and LLC4320, which focus on high-resolution,
short-term simulations, NEX-GDDP CMIP6 offers a broader
temporal perspective, making it essential for studying long-
term climatic changes and variability.

As illustrated in Figs. 6 and 7, as well as shown in the
supplementary videos, our dashboards help solve the challenge
of putting together all the data, providing access to efficient
visualizations in 3D space of multiple atmospheric and oceanic
variables. Our dashboards can help improve our understanding
of global ocean circulation and its role in Earth’s climate
system. Built with knowledge from a preexisting animation
(Fig. 8), we built dashboards that provide the ability to
integrate the DYAMOND and LLC4320 datasets, as shown
in Figs. 9 and 10. Our converted datasets of these large-scale
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Fig. 7: Formation of Agulhas rings at the African southeast
coast demonstrated using the LLC2160 ocean dataset.

simulation datasets are stored in the cloud and on the NAS
Pleiades Supercomputer [78]. The instructions for accessing
existing deployed dashboards or launch a new one can be
accessed from our GitHub repository [79]. We have worked
on several GEOS and MITgcm simulation fields, converting
them to IDX format, enabling seamless visualization and inter-
action via Jupyter notebooks and dashboards without intensive
computational resources. We also collaborate with several
NASA JPL (Jet Propulsion Lab) and NASA ARC (Ames
Research Center) scientists to help facilitate the extraction
of their region of interest, especially the Gulf Stream and
Kuroshio regions (Fig. 9), and have built unique dashboards
that display coupled outputs from both GEOS5 and MITgcm
configurations of the simulation. Our dashboards combine
multiple petascale datasets into a single interface, allowing
unprecedented visualization, interaction, and analysis of the
massive data. Our integration facilitates a deeper understand-
ing of complex climatic phenomena by enabling scientists to
seamlessly navigate and explore data across various scales and
dimensions.

Fig. 8: Prior preliminary animation by Nina McCurdy at
NASA ARC created before our collaboration motivated the
creation of the dashboard shown in Fig. 9. Image and video
courtesy of Nina McCurdy, Copyright NASA 2023.

B. Application-Specific Dashboards

Collaborating with researchers at NASA ARC and NASA
JPL, we built several application-specific dashboards to
demonstrate our framework. The first two use cases describe
a domain expert interaction with feedback. The third use case
provides users with ML-powered insights. We also provide
a use case with our collaborator at Utah State at Blanding,
Native American Serving Non-Tribal Institution (NASNTI).

1) Use Case 1: Multivariate Petascale visualization : To
produce useful interactive analysis on massive datasets such
as the NASA DYAMOND or LLC4320 Ocean Dataset, visu-
alization scientists typically need to use computing resources
at the NAS facility. Although NAS supports and promotes
full and open data access to the public, analyzing the data
on the supercomputers requires logging into secure platforms
and requesting nodes/cores. This dramatically limits the people
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who may be able to use the data in practice. Scientists and re-
searchers might need to wait hours to days to load the data and
produce a video clip for climate scientists, who then perform
their scientific tasks on these fixed-resolution animations. Be-
cause supercomputing centers often store only full-resolution
simulation data, accessing full-domain, full-resolution simula-
tion data can take time, making quick turnaround on-the-fly
analysis complex or slow. However, our innovative dashboard
and analytical approach significantly streamline working with
massive datasets, such as those often encountered in climate
science. We reduce the need for extensive computing re-
sources, allowing analysis to be performed on more accessible
platforms without compromising accuracy. Users can bypass
the inconvenient process of logging into secure platforms and
waiting for supercomputer access. Instead, they can directly
interact with the data through our user-friendly interface that
offers real-time analysis and visualization capabilities.

One key objective of the dashboard shown in Figs. 6 and 7
is to enable the visualization of multiple oceanic variables
over time. Traditional visualization techniques struggle with
the scale and complexity of the datasets involved, particu-
larly when dealing with simulation outputs spanning 10,000
timesteps across multiple fields. Our dashboard addresses this
challenge by offering progressive visualization capabilities and
allows scientists to explore the data seamlessly through an in-
tuitive interface [80]. For example, Fig. 6 shows the interesting
phenomenon of water circulation around the Mediterranean
region. The less saline water from the Atlantic Ocean passes
through the Strait of Gibraltar and begins to move eastward.
As the water moves east and the evaporation continues, the
salinity tends to increase, and the more salty water starts to
sink. Oceanographers and climate scientists worldwide have
studied this interesting phenomenon, but no tool has ever
allowed its interactive illustration on real data to be presented
to the general public until now. Another example is around
the Agulhas region, as shown in Fig. 7, where warm water
from the Agulhas current flows along the southeast coast
of South Africa and encounters the colder Atlantic Ocean,
which leads the current to bend back on itself. This process,
also known as “retroflection,” leads to the formation of large
swirling masses of water, creating the Agulhas rings [81].
The dashboard enables any user to examine and interactively
explore any regions of interest, as well as play the data across
time without waiting for animations to render.

2) Use case 2: Oceanic and atmospheric variables : Our
second use case builds on an existing collaboration between
visualization researchers at NASA ARC and ocean scientists
at JPL/Caltech. The collaboration sought to further investigate
the impact of mesoscale and submesoscale (< 500 km) sea-
surface temperature anomalies on local atmospheric circulation
and vice versa.

Ocean-atmosphere interactions have long been considered to
be limited to only the atmospheric planetary boundary layer
(APBL), up to 2,000 m above the surface. The ocean surface
is modeled as a mixed layer (50 to 200 m deep), with the
force of atmosphere acting on the ocean. For example, strong
winds deepen the ocean mixed layer, leading to a decrease in
the sea surface temperature (SST) [82].

Fig. 9: Increasing heat fluxes (two plots and images at the
bottom right) and air temperature (image at top middle) create
a high-velocity wind (image at top left) in the atmosphere
moving eastward for the Kuroshio region.

Numerical ocean-atmosphere models coupled with increas-
ing spatial resolutions are challenging previously held theories.
It is now known that the ocean-forced variability in the
atmosphere is at scales smaller than 500 km, similar to the
scales of ocean mesoscale eddies, which constitute up to 80%
of the total ocean kinetic energy [82]. Turbulent heat and
humidity fluxes are strongly enhanced above warm mesoscale
eddies where convection develops and reduces over cold
eddies, leading to a significant net heating and humidification
of the atmosphere. In addition, this impact of ocean eddies is
not confined to the APBL but concerns the whole troposphere,
which is up to 12,000 m above sea level. Through these mech-
anisms, the heat and humidity fluxes associated with ocean
eddies intensify atmospheric storms traveling eastward [83]
as shown in Fig. 9. As a result, ocean eddies in the Kuroshio-
Extension region off Japan can increase precipitations over
the West Coast of the U.S.A. by 20% [84]. These results
highlight the impact of ocean eddies on the Earth’s water cycle
and extreme atmospheric events. Recent studies [85] point to
the important role of sea surface temperature (SST) fronts
(10 km wide) surrounding ocean eddies on ocean-atmosphere
exchanges: SST fronts trigger a secondary circulation, with the
same width, in the atmosphere above the APBL that carries
heat and humidity to the upper levels.

Over a 6-week period of intermittent collaboration and
iteration in Spring 2023, the visualization researchers at NASA
ARC and the ocean scientists at JPL/Caltech developed a
preliminary visualization showing coupled vertical and hor-
izontal slices of various fields of interest (ocean temperature,
air temperature, northward wind velocity, specific humidity,
latent heat flux, and sensible heat flux). The visualization,
shown in Fig. 8, is an animated version of figures from recently
published results [85]. The visualization was highly effective
in supporting the ocean scientists’ investigation, leading to
important research insights [86], [87], but was limited to
vertical and horizontal slices at predefined locations and re-
quired the design, development, rendering, and distribution by
the visualization researcher. Extracting vertical slices of high-
resolution MITgcm data is computationally and I/O intensive
due to the native layout of the simulation output. Restrictions
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Fig. 10: Interesting wave pattern observed in the plots of
sensible and latent heat flux.

on visualization and analysis prompted NASA visualization
researchers to develop an high-performance computing (HPC)
interactive vertical slicer, leveraging HPC resources (compute
nodes, network, storage) at the NAS. Although an effective
approach, the HPC vertical slicer requires dedicated compute
nodes and dedicated time from visualization researchers. An
interactive vertical slicer, accessible to and driven directly by
ocean scientists, has been desired without having to be onsite
at a supercomputer.

Motivated both by the promising initial results and the lim-
itations of the preliminary animation, the NASA/JPL/Caltech
team began collaborating with a team from the Scientific
Computing and Imaging Institute at the University of Utah
to develop an interactive dashboard version of the prelim-
inary visualization. The collaboration resulted in the dash-
board shown in Fig. 10 with the aim of helping to study
the relationships between different variables of ocean and
atmospheric simulations in different regions of interest, such
as the Gulf Stream region and the Kuroshio region. For
the Gulf Stream region, we use 75◦ W to 60◦ W and 30◦

N to 45◦ N. For the Kuroshio region, we use 117◦ E to
192◦ E and 0◦ N to 45◦ N. The dashboard leverages high-
resolution datasets from the GEOS and MITgcm simulations
to isolate and visualize the interplay between various climate
variables. This region-specific approach allows scientists to
observe how atmospheric conditions such as temperature and
pressure gradients influence oceanic currents, salinity levels,
and vertical velocities and vice versa. Fig. 10 shows how
an investigation of an interesting wave pattern observed in
the graphs of sensible and latent heat flux (middle) and
examination of the associated vertical slices led the ocean
scientists to find that the wave pattern was trapped within the
atmospheric boundary layer (left) and did not extend above
the boundary layer, as previously thought.

3) User Case 3: ML-Powered Interactive Insights: Our
NEX-GDDP CMIP6 dashboard represents a significant step
forward in enabling climate scientists and researchers to in-
teractively gain actionable insights with the integration of ma-
chine learning-based anomaly detection. As shown in Fig. 11,
ML-powered interactive insights identify regions with the
highest anomalies and temporal trends. This feature can be

customized by the users by uploading their own models to the
dashboard before launching it. For example, users can instantly
identify areas of unusual temperature, precipitation, or hu-
midity, allowing them to focus on potential climate extremes,
model biases, or new phenomena. These insights are displayed
interactively on the dashboard, with clear visualizations of
anomaly intensity and bounding boxes over affected regions.

The ML-powered feature, triggered by the “Turn on AI
Insights” button, employs a ConvLSTM2D-based model [88]
to identify anomalies in climate data over time and space.
This model, trained on decades of climate simulations, com-
bines the predictive power of Convolutional Neural Net-
works (CNNs) for spatial data and Long Short-Term Memory
(LSTM) networks for temporal dynamics, making it well
suited for analyzing large-scale geospatial datasets.

The model works by leveraging two key inputs: historical
climate data sequences and encoded representations of the
day of the year (DOY). The input data are normalized to
account for seasonal trends and variability. By training the
ConvLSTM2D network [88] with sequences of normalized
data and corresponding DOY features, the model learns to
reconstruct expected climate patterns. Deviations between
reconstructed and observed data are marked as anomalies,
highlighting regions and times where climate variables differ
significantly from historical expectations.

By embedding ML-powered insights into the dashboard,
this feature transforms how climate data is analyzed and
interpreted. Unlike traditional approaches that require manual
examination or offline analysis, this tool automates anomaly
detection in real-time, uncovering hidden patterns and outliers
directly within scientists’ workflows.

In summary, the ML-powered interactive insights feature
enhances the NEX-GDDP CMIP6 dashboard’s utility, making
it not just a visualization platform but a decision-support
system. This innovation exemplifies how cutting-edge machine
learning techniques can be seamlessly integrated into climate
science tools, opening new frontiers for exploration and un-
derstanding of Earth’s complex systems.

4) Use Case 4: Data Democratization for Teaching : At
Utah State Blanding, a Native American Serving Non-Tribal
Institution (NASNTI), GEOG 4780/6780 Spatial Analysis is
taught by Professor Gustavo Ovando-Montejo. This course,
designed for upper division undergraduates and graduates, has
25 students dedicating 4 to 6 hours weekly to spatial analysis
using R. The curriculum emphasizes spatial reasoning, coding
techniques, and GIScience tasks, including data manipulation,
visualization, interpretation, and modeling, with a focus on
spatial statistics such as spatial regression.

Fig. 11: Anomalies detected for a random timestep in CMIP6
data. Text shown on the left, regions plotted on the right.
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Students in the course face significant challenges with
data acquisition, particularly during their final projects, which
account for 50% of their grades and involve selecting and
analyzing their own data. To assist with this, we provided
instructions for installing Jupyter Notebooks and accessing
the LLC2160 dataset from the cloud, which includes large
fields such as ocean velocities, temperature, and salinity. These
datasets are massive, exceeding 1PB in total. Our Jupyter
Notebook guides students through loading and visualizing
these datasets, and allows them to select specific timesteps and
regions for analysis. The first step in the Jupyter Notebook
provides an example of loading the Salinity data field with
dimensions of 8640*6480*90, with 10366 timesteps. The next
step shows users how to load the data and select any timestep
and region (x,y,z), at any quality or resolution they want. By
Step 4 and within minutes of sitting down with the Jupyter
Notebook, the students have a visualization of the NASA data
in a plot. Additional steps in the notebook walk the students
through querying the data, including calculating the percentage
of voxels within the selected salinity range vs. calculating
the percentage of world surface within the selected salinity
range. The dashboard demonstration showed how students
could seamlessly access spatial data stored in the cloud. The
students were initially struck by the realization and excitement
that they could access these global data and variables in full
resolution, akin to methods used by NASA scientists.

The students were excited to focus on specific areas of inter-
est and visualize them in real-time. The dashboard allowed for
actual data analysis without downloading, though they could, if
desired. A highlight was a spatial query selecting voxels within
a range, which students identified as basic suitability analysis
— a notable achievement given the data’s size. Overall, the
dashboards were invaluable for hands-on GIScience teaching.

VII. DISCUSSION

We report data conversion time and compression perfor-
mance in terms of peak signal-to-noise ratio for the DYA-
MOND and LLC4320 Ocean datasets. We compare perfor-
mance across three environments: a native NASA file system,
a personal laptop, and a server with cloud data cached to
local disks, enabling faster access than reading directly from
remote object storage. We also highlight key lessons learned
and discuss the broader impact and societal benefits of our
dashboards for democratizing access to petascale climate data.

A. Performance for Climate Dashboards

We tested the dashboard objectively in terms of time to
read the data at different locations and provide compression
metrics using CPU and GPU on Intel hardware.

Time Comparison for Data Processing. To test the efficiency
of data conversion and compression techniques, we copied 48
timesteps for a 3D field of the same data, around 1 TB, to dif-
ferent locations, including a NASA supercomputer, a personal
computer, and a server. The NAS Pleiades supercomputer with
one node and 24 cores took around 1 hour and 20 minutes to
convert and an additional 45 minutes to compress the data
losslessly. The waiting queue for the job to run was around

Fig. 12: Experimental results of the time required to convert
and compress 1 TB of data from different data locations, such
as NASA File System, personal computer, and a server.

10 minutes. The personal computer used for testing was a
standard M1 MacBook with 16GB RAM and 8 cores. It took
1 hour 35 minutes to convert the same data and an additional 1
hour 20 minutes to compress it. We also tested the conversion
and compression on a 12-core x86-64 architecture Intel Xeon
CPU with 64 GB RAM server. Converting the data took 50
minutes on the server and compression took an additional 1
hour 20 minutes. Fig. 12 shows these times in the same graph
along with the total time for easier comparison.

Data Compression Performance. To address the challenge
of storing and analyzing large high-resolution datasets such
as the LLC2160 and LLC4320 datasets, we experimented
with compressing some timesteps from both datasets with
lossy ZFP compression at different bit rates. We used peak
signal-to-noise ratio (PSNR) to evaluate the data compression
quality of this lossy compression algorithm. PSNR measures
the quality of data reconstruction after lossy compression
(higher is better). The results show that higher bit precisions,
such as 32 and 16 bits, maintain consistently high PSNR across
our benchmarks, indicating minimal loss in data quality. In
contrast, lower bit rates, such as 2, 4 and 8 bits, result in a
significant drop in PSNR, highlighting the trade-off between
compression level and data fidelity.

To optimize performance while maintaining cross-platform
accessibility, we implemented the ZFP library in SYCL using
Intel’s oneAPI [89], [90]. We improved the cache and reg-
ister usage of the ZFP library to fully leverage the GPU’s
processing power. We evaluated the performance of our GPU
implementation of ZFP on Intel Max1550 (Ponte Vecchio)
GPUs using multiple timesteps and fields from petascale
climate datasets. Figure 13(a) illustrates the throughput (in
GB/s) for 3D compression (encoding) and decompression
(decoding) at bit rates corresponding to powers of 2, up to 32,
for each dataset. Additionally, Figure 13(b) reports the PSNR
values of the datasets after decompression. For comparison, we
performed the same benchmarks on an Intel Xeon Platinum
8468 CPU using the serial implementation of the ZFP library.
Our SYCL-enabled GPU implementation achieved speed-ups
ranging from 907× to 564× for compression throughput and
from 542× to 329× for decompression throughput compared
to the serial CPU implementation. Notably, the highest speed-
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ups were observed at higher bit rates, while the lowest speed-
ups occurred at lower bit rates for both compression and
decompression.

(a) Encode and decode throughput (GB/sec) for the theta(temperature)
field (left) and salt field (right) for different timesteps, measured for
increasing bit rates.

(b) Peak signal-to-noise ratio using lossy ZFP compression algorithm
for increasing bit rates.

Fig. 13: Throughput and quality evaluation of the ZFP com-
pression algorithm for different datasets. The top row shows
the encode and decode throughput (GB/sec) for the theta and
salt field across multiple timesteps, measured at increasing
bit rates. The bottom row presents the PSNR for the ZFP
algorithm at various bit rates.

B. Lessons Learned

After several months of intermittent development and iter-
ation, the NASA/JPL/Utah team met (half of the group met
in person, half of the group joined remotely) to demonstrate
and explore the results. During the session, ocean scientists
immediately demonstrated the ability to engage with the data
in a way that was not possible before. Discussing phenom-
ena of interest while interacting with the dashboard, they
were able to develop new questions/hypotheses and provide
preliminary answers about the interaction between the ocean
and the atmosphere with a dramatic reduction of cognitive
load that only interactive visualization can provide and has
always been considered impossible for petascale data without
supercomputing resources. Investigation of an interesting wave
pattern observed in the plots of sensible and latent heat flux
and examination of the associated vertical slices led the ocean
scientists to find that the wave pattern was trapped within
the atmospheric boundary layer and did not extend above the

boundary layer, as previously thought. “This was something
quite new for us because we thought it was much above the
boundary layer, but no.” The vertical slices in the dashboard
shown on the left in Fig. 10 show how the clouds are within
the atmospheric boundary layer with very high and wavy latent
and sensible heat fluxes.

Our collaboration with oceanic scientists showed the use-
fulness of faster visualizations and emphasized the need to be
able to adjust timesteps and want to be able to view a time-
sequence animation with the press of a button, which was
crucial to seeing the expected correlation between multiple
fields. Because each visualization generated in this interactive
environment could take days to generate using the status
quo fixed-frame animation approach, the domain scientists
commented that our on-the-fly and interactive visualization
“was astonishing.” The ocean scientists also noted that the
ability to interactively adjust the vertical slice location allowed
them to check for numerical instabilities near the vertical
cuts, a capability they previously lacked. Additionally, the
interactive dashboard reduced the barrier to exploration and
collaboration by enabling investigations based on real-time
data observations, facilitating more dynamic and immediate
scientific inquiry.

Future iterations will help the new visualization dashboards
better match the traditional workflow of domain scientists.
We need to be able to automate the output of animations
for high-resolution data. However, as our use cases show,
being able to set the resolution low for low bandwidth or
quick investigations is something that climate scientists and
visualization researchers could not easily do. The ability to
share with college students the same data NASA and JPL
scientists use for their research is creating an invaluable
educational bridge. By enabling this accessibility, we are not
only democratizing access to the latest scientific data but also
inspiring the next generation of scientists and data analysts to
explore the climate phenomena with the same tools used by
leading researchers.

VIII. CONCLUSION

Our unified framework not only addresses the challenges
of petascale data visualization and analysis but also embodies
the FAIR principles, enhancing scientific data democratization.
Our framework is part of a larger movement to make petascale
climate data easily Findable [91] [92], enabling users to
easily discover and locate relevant datasets. Data are made
Accessible via publicly available Web links to cloud-stored
optimized formats, allowing researchers worldwide to access
petascale data without the need for specialized infrastructure.
The framework ensures Interoperability through its novel data
fabric abstraction layer that includes the use of standard
protocols and APIs, integrating multiple software components
and analysis tools. This allows for seamless integration with
existing scientific workflows and tools. The use of Analysis-
Ready Cloud-Optimized (ARCO) formats further enhances
interoperability by providing standardized, cloud-friendly data
structures. Reusability is promoted through comprehensive
metadata management, which is a cornerstone of our data
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fabric approach. This metadata not only facilitates data dis-
covery, but also provides context for proper data interpretation
and reuse. Additionally, our framework’s workflow ensures
that analyses are easily reproducible and reusable by other
researchers [92]. By adhering to these FAIR principles, our
unified framework enables researchers from diverse scientific
domains and institutions to access, analyze, and visualize
petascale data. The democratization of data and analytical tools
has the potential to accelerate scientific discovery and foster
collaborative research on a global scale.

IX. GITHUB LINK FOR CODE AND SUPPLEMENTALS

https://github.com/sci-visus/Openvisus-NASA-Dashboard
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