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Attribute-Aware RBFs: Interactive Visualization of Time Series Particle
Volumes Using RT Core Range Queries

Nate Morrical* Stefan Zellmann† Alper Sahistan* Patrick Shriwise‡ Valerio Pascucci*

Figure 1: The “Cabana Dam Break” data set, rendered interactively with our method at 46 FPS, 4 samples-per-pixel per-frame with
volumetric shadows (left is 1 frame, right is 1024 averaged frames, bottom row are progressing time steps). GPU-accelerated tree
construction and blue noise approach enable interactive animation and improved perception over time. (See supplemental for a
video)

ABSTRACT

Smoothed-particle hydrodynamics (SPH) is a mesh-free method
used to simulate volumetric media in fluids, astrophysics, and solid
mechanics. Visualizing these simulations is problematic because
these datasets often contain millions, if not billions of particles car-
rying physical attributes and moving over time. Radial basis func-
tions (RBFs) are used to model particles, and overlapping particles
are interpolated to reconstruct a high-quality volumetric field; how-
ever, this interpolation process is expensive and makes interactive
visualization difficult. Existing RBF interpolation schemes do not
account for color-mapped attributes and are instead constrained to
visualizing just the density field. To address these challenges, we
exploit ray tracing cores in modern GPU architectures to acceler-
ate scalar field reconstruction. We use a novel RBF interpolation
scheme to integrate per-particle colors and densities, and leverage
GPU-parallel tree construction and refitting to quickly update the
tree as the simulation animates over time or when the user manip-
ulates particle radii. We also propose a Hilbert reordering scheme
to cluster particles together at the leaves of the tree to reduce tree
memory consumption. Finally, we reduce the noise of volumet-
ric shadows by adopting a spatially temporal blue noise sampling
scheme. Our method can provide a more detailed and interactive
view of these large, volumetric, time-series particle datasets than
traditional methods, leading to new insights into these physics sim-
ulations.
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1 INTRODUCTION

In high-performance simulation, the use of volumetric particle rep-
resentations is widespread. Their memory representation is rela-
tively compact, as a particle requires only a position and a radius.
Particles can also carry corresponding scalar attributes, like velocity
or temperature. Similar to finite element meshes, particles have the
advantage that they can be placed anywhere in the computational
domain and adapt to the underlying frequency of the data. How-
ever, unlike finite elements, these particles do not require memory-
intensive connectivity information. Instead, they can be modeled
using radial basis functions that naturally combine and blend to-
gether. This has the additional benefit of allowing particles to move
freely in space without concern over re-meshing. Because of this
ease of expression, particle representations often lend themselves
to mesh-free simulation methods like Smoothed Particle Hydrody-
namics (SPH) [6, 21].

However, this flexibility poses challenges to interactive visual-
ization tools, as these often need to structure the data a priori or
on the fly. Approximate methods splat particles onto the screen or
into structured grids, causing overdraw issues or atomic contention.
When particles have color attributes, post-interpolated grids (where
cells average particle attributes before colormapping) produce in-
correct results for categorical data, while pre-interpolated grids
(where cells average pre-colormapped attributes) consume a lot of
memory, and both fail to capture fine details; while splats require
sorting particles from front to back to composite, which fails when
particles overlap.
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As various methods have been proposed to visualize these parti-
cle volumes, GPU architectures themselves have greatly evolved.
Today, many GPU vendors include ray tracing cores, otherwise
known as “RT cores”, where ray traversal through an acceleration
structure is implemented in the silicon of the GPU itself. GPU ray
tracing frameworks also include high performance tree construction
routines, reducing preprocessing times and implementation com-
plexity.

Leveraging these RT cores, recent work by Knoll et al. [15] vi-
sualize volumetric particles in a very different manner from prior
methods. Their approach marches rays through the volume from
front to back, and as rays intersect particles out-of-order, these par-
ticles are stored in a ray payload stack. Then, each ray segment
sorts this stack of particles front to back before compositing these
particles together.

This method is very enticing, as it does not require particles be
sorted on the CPU during camera manipulation. Instead, only a
small intersected subset of particles need to be sorted. Then, when
pixels reach a saturation in opacity, the marching process can return
without needing to process occluded particles further back. Regard-
ing visualization quality, this approach can composite particles di-
rectly without the need for voxelization. And because this method
is compatible with RT core frameworks, visualization tools can of-
fload the technical complexity of GPU ray tracing to the driver and
leverage the included, fast tree construction routines to avoid long
preprocessing times.

Unfortunately, this approach also comes with several compro-
mises. One issue is that particles are interpreted as view-aligned
disks, which prevents them from overlapping and blending volumet-
rically. Instead, the disks discretely pop over or under each other as
the camera moves. Another challenge is that the size of the ray pay-
load stack is fixed, as per current GPU architectures. If the stack is
too small, it will overflow when many particles overlap a ray seg-
ment, resulting in missing or dropped particles. If it is too large,
registers spill to global memory, impeding interactivity. This prob-
lem are particularly apparent with large radii for smoother blending,
as the particles become more likely to intersect rays. Then, despite
ray intersection being hardware-accelerated, intersecting many par-
ticles can still cause overdraw-like issues where compositing be-
comes the bottleneck. Still, if these issues could be addressed, it
might very well be possible to use RT cores to achieve truly inter-
active particle volume visualization with little to no preprocessing
times or visual compromises.

Therefore, we explore a more robust solution to RT core accel-
erated particle volume rendering, taking inspiration from recent
works on SPH particle rendering [14, 25, 40] that focus on visu-
alization quality. We substitute stack-based particle intersection
with a stackless radius range query, collecting and interpolating
particles surrounding the query point to reconstruct the underlying
scalar field. Then, to support per-particle attributes, we describe a
novel radial basis function (RBF) integration scheme that computes
a weighted color average in addition to local particle density. These
blended colors can be combined with an RBF density map to gain
insights into where particles overlap, what they represent, and how
they contribute to the final result.

From there, we explore another key advantage of RT core
frameworks—namely GPU-parallel tree construction—to enable in-
teractive time series rendering. We leverage acceleration structure
refitting to allow for interactive control over the degree of overlap
of the particles. Then, to reduce memory consumption, we take
inspiration from recent methods [7, 25] and cluster particles at the
leaves.

Finally, we explore stochastic volumetric shadows to achieve
higher fidelity visualizations with improved depth perception.
Noise from volumetric path tracing can make it difficult to track
particle movement over time. To address this, we implement a

single-scattering model using a blue noise stochastic ray marching
approach [41]. This improves the structure of the resulting noise
in single-sample-per-pixel images, making it easier to track particle
movement.

More specifically, we present the following contributions:
• an "Attribute-Aware RBF" interpolation scheme,
• an application of RT core range queries to accelerate particle

field reconstruction,
• an exploration of GPU-parallel tree construction and refitting

to enable user-driven per-particle radii and time series data,
• an application of Hilbert clusters to reduce the size of these

trees to enable visualization of larger particle volumes,
• and lastly, a strategy to utilize blue noise for stochastic volu-

metric shadows for improved time series visualization analy-
sis.

2 RELATED WORKS

2.1 Particle Volume Rendering

One class of methods to visualize particles is to rasterize them as
elliptical Gaussian “splats” onto the screen [9], using additive com-
positing to determine a density of particles through a pixel [5, 34].
But when particles have color-mapped attributes associated with
them—attributes like temperature or velocity—they must be sorted
from front to back, then composited one by one [8]. This composit-
ing is an approximate solution, as it cannot handle when colored
particles overlap and mix together volumetrically. And as these vol-
umes grow, this sort slows down the visualization to non-interactive
framerates.

Another common strategy is to rasterize particles into structured
grids [2, 4, 29], then visualize those grids using methods like ray
marching [22] or null collision methods [18,42], whose algorithmic
complexities are independent of data size. However, this particle-to-
grid rasterization preprocess is costly, especially when many parti-
cles influence a common voxel and atomic contention serializes ex-
ecution. In some methods, this grid splatting process must occur ev-
ery frame [4]. Low-resolution grids can undersample data, making
it impossible to differentiate particles during visualization, particu-
larly when they have categorical attributes (e.g., electrons, protons,
neutrons). Too high a resolution can lead to excessive memory us-
age due to empty voxels; and both problems often occur together as
different parts of the simulation have different particle densities.

Other works visualize volumetric particles directly through ra-
dial basis function (RBF) field reconstruction, reducing algorith-
mic complexity using linearly indexed particles into BSP trees [12],
octrees [32], bounding volume hierarchies [16], and structured
grids [33, 35, 40]. These methods traverse those data structures dur-
ing ray marching or tracking to achieve a high quality image. How-
ever, building these data structures is an arduous task, and often
prevents user interaction with particle radii or the time dimension
of the simulation. These data structures can consume a significant
amount of memory, and traversing these data structures on GPU
architectures introduces load balancing issues or thread divergence
that serializes execution, lowering GPU utilization and degrading
visualization interactivity.

2.2 RT Core Methods

In scientific visualization, ray tracing cores have been used with
great success to visualize otherwise challenging data modalities on
GPU architectures. Early works by Wald et al. [28,37,38] and Mor-
rical et al. [27,28] use ray tracing cores to accelerate point location
of finite element meshes, by substituting a point-based traversal for
a ray traversal. Later work by Wald et al. [39] and Zellmann et
al. [47] explored data transformations enabling these ray tracing
cores to interpolate neighboring same-level-cell regions in the con-
text of adaptive mesh refinement (AMR) visualization. Zellmann et
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al. build off this latter work and describe the system using ray trac-
ing cores for rendering time series AMR data [45] and AMR flow
visualization [44].

Closely related to our work, Zellmann et al. [46] demonstrate a
connection between point location queries and range queries, and
use this connection to implement a fast physics-driven graph lay-
outer. Their work demonstrates significant performance improve-
ments over software-based traversal strategies, and leverages GPU-
parallel tree construction to allow the graph to change from step to
step. Later work by Evangelou et al. [3] extend this idea to imple-
ment a truncated K-nearest-neighbors query. These concepts have
successfully been used by Zhao et al. [48] to accelerate particle-
based simulations.

Also closely related to our work is the method by Knoll et
al. [15], which as described before uses RT cores to accelerate a
particle volume splatter. Gralka et al. [7] observe that construct-
ing hardware accelerated trees over particles consumes a signifi-
cant amount of memory. Their work proposes a hybrid strategy
which clusters particles into memory-efficient PKD treelets, which
are then stored at the leaves of hardware compatible trees. This re-
duces memory consumption while maintaining benefits from hard-
ware acceleration. Recent work by Morrical et al. [25] propose a
simpler and faster Hilbert clustering strategy, in the context of fi-
nite elements.

3 RENDERING COLORED TIME SERIES PARTICLE VOL-
UMES

Taking inspiration from these prior works, here we describe our
method for interactively rendering colormapped time series particle
volumes on modern GPU architectures using RT cores.

In Section 3.1 we explain how to interpolate points in space to
reconstruct the volumetric field. In addition to particle density, here
we also describe how to interpolate color-attributed particles using
a radial basis integration scheme. Then, we show how ray tracing
cores can be used to accelerate this reconstruction process.

In Section 3.2 we describe how to leverage GPU-parallel tree
construction routines to enable interactive exploration of particles
over time. We also leverage a variant of tree construction, called
“tree refitting”, to allow users to manipulate particle radii by corre-
sponding scalar attributes. Then, we adapt these construction rou-
tines to reduce memory consumption and improve build time.

In Section 3.3 we describe how we use this accelerated field re-
construction for direct volume rendering. There, we cover how to
achieve stochastic volumetric shadows for improved depth percep-
tion, and also how to reduce noise in these shadowed regions to
improve perception of data over time.

3.1 Field Reconstruction

By themselves, mathematical points have no volume, and only de-
fine a location in space. But for visualization purposes, we want
these points to represent a sampling of the volumetric field around
them. Therefore, we need to clarify the behavior we expect when
transforming a cloud of particles into a continuous field of values.
We refer to this transformation process as field reconstruction.

As this field is sampled closer and closer to a particle, that par-
ticle should influence the sampled location more and more; and as
this field is sampled further away, that particle’s influence should
fall off with distance. Neighboring particles should combine to-
gether to achieve a smooth field; and to enable the exploration we
want to remap this field to hide certain values and reveal others.
This will also give us control over how particles blend together
since we can choose only to show locations where multiple parti-
cles overlap.

We also want to use a colormap to visualize the attributes asso-
ciated with each particle, in addition to the relative density of those

particles in space. When particles are nearby, we aim to have a nat-
ural blending between color-mapped attributes. To our knowledge,
no prior work on high-quality particle sampling accounts for this.
So in Section 3.1.2, we rethink the idea of RBF-based particle sam-
pling, and modify these RBFs to drive a weighted color averaging.

3.1.1 Density Field Φ
To visualize particle density, we implement an integration scheme
over radial basis functions (RBF). An RBF is a real-valued function
φ which takes as input two points in space, a sample point x and a
center point ci, and returns a value based on the distance between
these two. We use a truncated Gaussian variant of this RBF defi-
nition, where this value drops to zero if the distance between these
two points exceeds a given radius ri. In practice, we chose this
RBF to be a Gaussian distribution truncated three standard devia-
tions away from the mean, as this value tightly bounds the particle
while still producing an artifact-free volumetric field. Lastly, we
supply a weight w, used to enable or disable a particle’s influence
on the field, which we define as a user-driven mapping from the
per-particle attribute si.

φ̂(d,r,w) = w∗ e−
1
2 (

3d
r )2

(1)

φi(x,ci,ri,si) =

{
φ̂(||x− ci||,ri,w(si)), if ||x− ci|| ≤ ri

0, if ||x− ci||> ri
, (2)

Using these density RBFs, we can define a scalar density field Φ
as the sum of all RBFs contributing to a point in space:

Φ(x) =
n

∑
i

φi(x,ci,ri,si) (3)

We can then map this RBF density field to an optical density field to
direct what final density values constitute surfaces or volumes in our
visualization, and can also directly colormap this RBF density field
to gain visual insights on where particular density values occur.

3.1.2 Attribute Field Θ
Alternatively, we may want to visualize per-particle attributes us-
ing a colormap. In quantitative cases—for example, a tempera-
ture or mass associated with each particle—we want to show a di-
rect spatial blending of these attributes; and for particles that are
qualitative—e.g. an enumeration of particles as either “electrons”,
“neutrons”, or “protons”—we want to classify the presence of these
in space using distinct colors. This is often referred to as pre-vs-
post-interpolative classification and ultimately we want to support
both of these cases.

Therefore, rather than visualizing the RBF density field directly,
we use these basis functions to interpolate per-particle attributes.
For post-classifications, continuous attributes blend gradually in
space; and for pre-classifications, overlapping particles of differ-
ent classes can be identified by the presence of mixed colors, such
as purple in a field of blue electrons and red protons—albeit with
careful curation of a colormap to avoid ambiguities.

To achieve this intended behavior, we can extend our previous
RBF density field. We start by defining a single particle’s attribute
as a uniform θ̂ throughout the particle’s radius ri, and zero other-
wise. This θ̂ is defined as either the per-particle attribute si, or a
user-driven colormapping of si.

θi(x,ci,si,ri) =

{
θ̂(si), if ||x− ci|| ≤ ri

0, if ||x− ci||> ri
, (4)

Using these attributed RBFs, we can define an attribute field Θ
as a weighted average of all particle attributes influencing a given
location in space, where the weight of each attribute is derived from
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(a) Attribute-Aware Radial Basis Functions (1) use a world-space
color blending, overcoming compositing limitations of prior splatting
methods (2). Since our approach uses a stackless traversal over over-
lapping points (3), we safely avoid stack overflow issues exhibited by
prior work [15] when ray-particle overlap is large (4).
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(b) Prior works visualize particle volumes using only the integrated
RBF density field (1). Additionally, we can use our Attribute-Aware-
RBFs to visualize per-particle properties, for example, per-particle
colors (2). These attributes can additionally weight per-particle RBF
contributions (3) or control per-particle radii (4).

Figure 2: An illustration of RBF field reconstruction as ten particles move towards each other from left to right. (Also see the supplemental.)

(a) (b) (c) (d) (e)

Figure 3: An illustration of RT core range queries being used for radial basis function (RBF) field reconstruction. Given a collection of particles
(a) with varying positions, colors and radii, we want to efficiently reconstruct the density field Φ and attribute field Θ at the query point (the open
circle in white). Particles are bound by their support radius r (b), which in turn are bounded by axis aligned boxes compatible with RT cores (c).
We trace a zero-length ray whose origin is the query point, and RT cores cull away all particles whose support do not overlap the query point (d).
The RBF contributions of all particles within range are integrated during traversal, producing the desired Φ and Θ values in (e).
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Figure 4: (left) The influence of a particle φ falls off with distance
and is truncated to radius r, while a particle’s color θ remains uni-
form throughout this radius. (right) These radial basis functions are
summed to produce a volumetric density Φ , and produce a weighted
color average Θ .

the previously defined density RBF φi of that particle at the same
location.

Θ(x) =
∑n

i θi(x,ci,ri)∗φi(x,ci,ri)

Φ(x)
(5)

This weighted average results in a natural blending of col-
ormapped attributes while still retaining a uniform color for when
particles do not overlap, and whose influence falls off with distance.

3.1.3 Optimizing Field Reconstruction
With the definitions of Φ and Θ above, we can now visualize our
particle data volumetrically. However, to visualize these datasets
interactively, we must be capable of sampling this scalar field hun-
dreds of times per pixel per frame in only a couple milliseconds.
A naive approach would be to iterate over all particles in our data,
summing up each particle’s density and averaging all contributing
colors together; but as the number of particles increase, this will
quickly become a bottleneck. However, because we truncate the in-
fluence of a particle to a finite radius around it, only a small set of
particles will actually influence our field at any given point in space.
Therefore, we can substitute this exhaustive traversal for a search
that returns only the particles within range of our query point.

In computational geometry, this problem is otherwise known as a
“radius range query”. Traditionally, these queries are implemented
on the GPU either using linearly indexed particles in a regular grid,
or by using bounding volume hierarchies. Unfortunately, both of
these schemes come with certain disadvantages. With grids, load
balancing is an issue in cases where particle density is highly non-
uniform, where the majority of particles will fall into a select few
cells and result in near-exhaustive traversals. On the other hand,
tree traversal on Single-Instruction-Multiple-Data (SIMD) units in-
troduces thread divergence on GPU architectures, which serializes
execution.

Fortunately, modern GPU architectures support hardware-
accelerated tree traversal as part of ray tracing coprocessors. These
RT cores act more like Multiple-Instruction-Multiple-Data (MIMD)
units [31], which are more resilient to divergent tree traversal. As
demonstrated by Zellmann et al. [46], we can (ab)use these units
to implement a hardware-accelerated range query. Their work uses
range queries in a two-dimensional graph context to simulate the re-
pulsive forces between nearby nodes, but we can easily extend this
idea to support our three-dimensional particle RBF integration (cf.
to Equations 3 and 5).

We begin by building a bounding box over every particle in our
data with a radius ri. Then, we pass these bounding boxes to our
ray tracing API, using the built-in tree constructor. By constructing
our tree this way, we “bake” the ranges of our particles into the tree.
Then, when we want to traverse through all particles within range
of a given location, we trace a ray whose origin is set to that query
location. We set the tmin and tmax values of the ray to 0, turning
the ray query into a point query. Due to the inner workings of these

RT cores, we must set the ray direction to something with non-zero
length, so we set the direction to a constant (1,1,1). Finally, as
this ray intersects boxes at the leaves of our tree, if the ray origin
lies within the radius range of the corresponding particle, we can
conclude that particle is within range. An illustration of this method
can be found in Figure 3.

To use these range queries for field reconstruction, we reserve
several ray payload registers, one to hold our density field value Φ
and a small number of registers to hold our attribute field values
Θ . We initialize these values to 0, and then call the appropriate in-
trinsic to dispatch ray traversal to our RT cores. As rays intersect
our range boxes, RT cores return for intersection testing. We test
to see if our ray origin is contained within the intersected particle’s
radius, and if so, we report a potential intersection, passing the eval-
uated particle’s distance d, scalar attribute s and radius r as “hit
attributes”.

From there, execution in the fixed function ray tracing pipeline
moves to “any hit” evaluation. We use the given particle’s
scalar attribute s to determine that particle’s weight w. For post-
interpolation we use the attribute s as our θ̂ directly, but for pre-
interpolation we use this s to instead lookup a color for the given
particle, and assign that to our θ̂ . Then we use the given distance
d, radius r and weight w to evaluate our particle’s RBF density φ̂ at
the queried location. Once this is evaluated, we add our particle’s
contributing density φ̂ to our total density field value Φ(x) in our
ray payload. We also weight our θ̂ by this RBF density φ̂ and add
the result to our total attribute field value Θ in our ray payload. Fi-
nally, we ignore the hit, tricking our RT cores to continue traversal
to the next particle within range.

When ray traversal completes, the returned value stored in Θ
technically represents just the numerator of our weighted average.
We divide this accumulated value by the returned Φ density value
to solve for the true Θ value. If pre-interpolating the attribute
field, this attribute field Θ can be colormapped; and with post-
interpolation, this attribute field can be visualized directly. From
here, we can also map the integrated density field value Φ to an
optical density using a user-driven density map. If users wish to
visualize the density field directly, we can substitute the previously
returned color value with a colormapping of the returned density
field value Φ .

3.2 Tree Construction and Refitting
By using hardware accelerated ray tracing, we also benefit from
high performance tree construction. Prior particle volume render-
ing methods construct a hierarchy offline on the CPU [14]; but if
particles move or radii are edited, this hierarchy must be rebuilt.
Because we are no longer limited to offline tree construction, we
now have the opportunity to interactively move and resize particles
to enable additional exploration. (See also Table 1).

3.2.1 Interacting with Time
To handle particle movement between time steps, we allocate a
buffer of axis-aligned bounding boxes in advance, with one box per
particle. Then, whenever the simulation progresses or the user inter-
acts with the time dimension of the data, we compute these bound-
ing boxes in parallel on the GPU using a compute shader. This
compute shader adds and subtracts the given particle’s radius from
its current origin, storing these two extremes into the bounding box
buffer.

Some simulation codes also introduce new particles or remove
particles as the simulation progresses. For our application, we as-
sume a maximum theoretical number of particles to avoid expen-
sive reallocation of the bounding box buffer. Then, if a box con-
tains no points, possibly due to one timestep having fewer particles
than another, we set the minimum and maximum bounding box co-
ordinates to floating point NaN. This disables the box from being
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(a) (b) (c)

(d) (e) (f)

Figure 5: Illustrations of bounding boxes over a dynamic scene:
On the top figure we see particles(a) with expanding radii(b) that
can be handled by tree refitting(c); on the bottom, we see parti-
cles with changing positions(d) that may create suboptimally overlap-
ping bounding boxes(denoted with dotted lines)(e) hence requiring
rebuilds(f).

Figure 6: Sorting the particle along a Hilbert curve to quickly and
efficiently create spatially coherent clusters(denoted in solid lines).

considered by our ray tracing graphics API during tree construction.
Finally, we pass this buffer directly to our ray tracing framework’s
real-time tree construction routine, recycling existing scratch mem-
ory required by this tree construction to avoid stalls from buffer
reallocations.

3.2.2 Interacting with Particle Radii

To handle particle radii manipulation, we can refit our trees rather
than rebuilding them. This refitting process is significantly faster
than full tree construction, and allows for smoother particle radii
manipulation, especially for very large particle volumes. Here, re-
fitting is allowed, since radii manipulation does not change the un-
derlying tree topology.

In practice, we introduce another user-driven map, which we call
a “radius map”, which allows users to control individual particle
radii, and can be used as a more efficient means of hiding particles.
With the RBF weight in Equation 1, near-zero weighted particles
are still intersected by range queries, and result in redundant com-
putation. By instead hiding particles by radii, users reduce bound-
ing box overlap in the tree and avoid this unnecessary computation,
effectively enabling empty-space skipping.

To enable per-particle RBF manipulation, we modify our bound-
ing box compute shader to read the current particle’s scalar attribute
s from the radius map to set a unique particle radius. For con-
venience, we specify a global RBF particle radius, then have this
radius map return a percentage, which we multiply by the global
RBF particle radius to compute our final particle radius. Then, we
use the appropriate refitting instructions supplied by our ray tracing
framework to account for these updated particle bounds.

3.2.3 Reducing Memory Consumption by Clustering

Finally, with some large datasets, memory consumption can be
an issue—especially for consumer GPUs with limited memory re-
sources. At the moment, we need to account not only for the parti-
cles themselves, but also their bounding boxes. However, a buffer
of bounding boxes over each particle will alone be twice as large as
the particle data itself, since each axis-aligned box must be defined
using two additional points, a minimum corner and a maximum cor-
ner. To reduce memory consumption, we can reduce the number of
bounding boxes we create by clustering nearby particles into the
same box.

To do this clustering, we follow in the footsteps of recent
works [7, 28], and reorder particles along a Hilbert space filling
curve. This reordering operation can be done either on the CPU, or
on the GPU using a parallel radix sort. By reordering particles this
way, nearby particles in space will also be nearby in memory. Then,
rather than compute an individual bounding box over every particle,
we can build “cluster” bounding boxes over sets of N neighboring
particles in memory. The first cluster contains particles 0 → N −1,
the second cluster contains particles N → 2N − 1 and so on (See
Figure 6).

This will come at a slight cost to field reconstruction perfor-
mance, as now with every intersected cluster, all particles in the
cluster must be tested for intersection against our query point. How-
ever, when neighboring groups of particles are likely to overlap the
query point already, processing all of these nearby particles together
in a memory coherent linear process can be more efficient than a
more intensive depth first search through the same set of particles.

3.3 Direct Volume Rendering

Using radial basis functions, we can reconstruct our scalar field at
any point in space, including both the integrated RBF density field
Φ as well as our colormapped attribute field Θ . We also have the
means to quickly reconstruct this scalar field thanks to hardware
acceleration. Then, we can use GPU-parallel tree construction to
animate these fields interactively, and can use tree refitting to ma-
nipulate particle radii. With this, we have a solid framework in
place to enable direct volume rendering of our time series particle
volumes.

3.3.1 Emission and Absorption

One common approach to direct volume rendering is to use the
emission and absorption lighting model. With this model, samples
within participating media emit light that can be observed directly
by the viewer. This emission is absorbed exponentially by the vol-
ume depending on the optical thickness of the media. We see the
effects of this absorption in the form of occlusion, where opaque
media in front occludes other media further back.

Starting at the camera origin, we generate a set of view-aligned
rays to test for intersection against a global bounding box contain-
ing our particle data. We then march these rays from their entry
point in the box to their exit, sampling our scalar field at every
step. We use the RBF density field Φ as our optical density and
the Beer-Lambert law to compute the transmittance along the ray,
which we use to composite the corresponding Θ color values from
front to back until the ray exits the bounding box or the pixel’s
opacity reaches saturation. To avoid “wood grain” artifacts from
the regular step size, we jitter each ray with a random number, and
average these results together over time.

3.3.2 Stochastic Volumetric Shadows

A draw back of the emission and absorption lighting model is
that viewers can find it difficult to comprehend depth within the
data. This is because we often depend on external light sources
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Figure 7: An illustration of different volume rendering strategies for the Cabana Dam Break dataset over time from left to right (rendered
interactively at 45 FPS). Single-Scattering (4K-SPP) highlights depth through shadows, but requires time to converge. Null Collision methods
(NC 1-SPP) decorrelate input random numbers from output luminance, causing to significant noise in single sample per pixel configurations.
Stochastic Ray Marching (SR 1-SPP) preserves this correlation, allowing for blue noise patterns in the final image structure of single-sample-per-
pixel images, greatly improving image clarity. (We recommend zooming in to evaluate noise levels, or observing these results in the supplemental
material.)

and shading to give shape to the implicit geometry within our vol-
ume [20,43]. Therefore, to enable better recovery of depth informa-
tion during visualization, we can extend this emission and absorp-
tion model to include volumetric shadows. These shadows provide
more insight into the volume by allowing viewers to discern cracks
and crevices through the interaction of light with surfaces inside the
volume. Additionally, shadows cast by these surfaces can offer ad-
ditional depth cues, especially if the user is able to manipulate the
origin of the light.

To implement volumetric shadows, we can move over from an
emission and absorption model to a single scattering model. Rather
than interpreting sampled colors as emission sources, we instead
interpret these colors as the albedo—or reflectiveness—of our me-
dia. With this change, the appearance of our media now depends on
how much light is received at a given location in space. This can be
controlled by manipulating the location of the light, or by rendering
certain locations of the media optically transparent.

Unfortunately, with alpha-composited ray marching we run into
a scalability issue, since as is, we have many samples along our
viewing rays that need shading. To shade a given sample point,
we must trace a secondary shadow ray to our light source. These
shadow rays must march through the media—just like our primary
rays—to determine how much light our volume transmits. Though
our field reconstruction is fast, if every primary ray traces secondary
shadow rays at each sampling point, we will quickly reach perfor-
mance limits and lose our visualization interactivity.

Instead, we can reduce shadow sampling expense by substitut-
ing ray marching for a null collision method. This uses a Monte
Carlo sampling process to sample equally likely distances into the
volume (called “free flight distances”). Since the Beer Lambert law
produces absorbance given a distance, we can invert this function to
generate free flight distances given random absorbance values. In
heterogeneous media, inverting absorbance is difficult, since optical
thickness varies spatially. Null collision methods solve this problem
by introducing “null particles” that homogenize the volume and en-
able inverting absorbance without altering the volume’s appearance.
Then, a rejection sampling process is used to determine if the cur-
rent sample is a null collision event or a scattering event. For a
more fully detailed explaination of null collision methods, we rec-
ommend the distance sampling section of the SIGGRAPH course
by Novak et al. [30].

By sampling free flight distances, we can reduce the number of
shade points along our viewing ray from N to 1. Therefore, we

only need to trace one shadow ray for that one shade point, which
significantly reduces sampling expense per frame. The compromise
with this approach is the introduction of significant noise, similar to
Monte Carlo path tracing, which must be converged over time.

3.3.3 Reducing Image Variance with Blue Noise
Null collision methods work well for visualizing static datasets
where the image has time to converge. However, the high degree of
noise present in single-sample-per-pixel images make it difficult to
comprehend data that animates over time. Traditional methods use
some variation of temporal antialiasing to converge these stochastic
effects in the presence of motion, but these techniques require mo-
tion vectors, which we cannot easily compute due to the volumetric
nature of our data. Alternatively, we could increase the number of
samples taken per-pixel per-frame, but this would slow down our
visualization to non-interactive framerates.

We observe that the difficulty in comprehending single-sample-
per-pixel images from null collision tracking stems from a lack of
structure in the noise, especially in the shadowed regions we de-
pend on to perceive depth and form. At the same time, this noise
is unavoidable, since null collision trackers use rejection sampling
to handle null scattering events along the ray. Even with a high-
quality random number generator, this rejection sampling process
destroys any correlation between the input random noise and the
output image structure.

Fortunately, there are other methods to compute free-flight dis-
tances. First, we can describe absorbance F as a function of t,
where t represents a distance along a ray:

F(t) = ξ = 1− e−
∫ t

0 µt (s)ds (6)

In the equation above, µt(s) represents the volumetric extinction
at a point along our ray. The exponential term represents the Beer-
Lambert Law, which models the transmittance of light through the
volume as an exponential decay dependent on the distance traveled
and the overall extinction along that distance.

In effect, the equation above produces an absorbance ξ between
0 and 1 given a free-flight distance t. Our objective then is to in-
vert the above function, such that we can supply a single random
absorbance value ξ between 0 and 1 to obtain a free flight distance
t. Note, it is important that we require only one such random value
ξ , so that we can maintain a strong correlation between the input
random numbers and the output sampled distance.
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If we attempt to invert the equation above, we will discover that
this function can only partially be inverted:∫ t

0
µt(s)ds =−ln(1−ξ ) (7)

This is because the extinction values µ are a function of t, which
we simultaneously want to solve for. Fortunately, we can solve for
an approximation of the above equation by converting this integral
into a Riemann sum:

n

∑
i=1

µt,i∆ =−ln(1−ξ ) (8)

If we can solve for the right hand side analytically, then we per-
form a linear search over the left hand side until we find a solution
to this equation. Therefore, we begin by solving for the right hand
side of this equation by generating a random value ξ . Then, we
use a ray marching process to search numerically for a solution to
this equation, computing a running sum of the sampled extinction
values µ along our ray multiplied by our step size until this sum ex-
ceeds the solution to the right hand side. The distance at which the
left hand side exceeds the right hand side is an approximate solution
to the free-flight distance.

The advantage of the above stochastic ray marching technique
to computing our free-flight distance is that we no longer need to
use rejection sampling, since we no longer need null particles to
homogenize the volume in order to invert absorbance. With this al-
ternative ray marching method, the sampled shading positions into
our volume require one random number, and will have a high cor-
relation with the input random number generator. Therefore, we
can improve the structure of the volumetric noise by using Spatio-
Temporal Blue Noise (STBN) textures, as described by Wolfe et
al. [41]. The results of this transformation can be seen in Figure 7.

4 EXPERIMENTAL RESULTS

To evaluate our method, our rendering backend [26] uses Vulkan
1.3 along with the VK_KHR_raytracing_pipeline extension to
access hardware-accelerated ray tracing functionality on NVIDIA,
AMD and Intel GPUs in a Linux based environment. Unless oth-
erwise stated, measurements were taken using an NVIDIA RTX
4090 and an Intel i9 12900K processor. For Figure 10, we addi-
tionally include evaluations on an NVIDIA RTX 3060 Ti, an Intel
ARC A770, and an AMD RX 6750 XT. All images were rendered
at a resolution of 1024×1024 up to 64 samples per pixel, with one
sample per frame.

4.1 Datasets
With this hardware, we performed a series of tests on a collection
of time series particle volumes of varying sizes (cf. Figure 8):

1) Nozzle represents a simulation used to model jet fuel injec-
tion [11]. This dataset consists of an opaque cylindrical structure
made of static particles, which serves to concentrate the jet. Over
time, this simulation injects new matter into the simulation, result-
ing in increasing memory size and density variations that present a
challenge for RBF particle visualization.

2) Coal Boiler represents a real-world simulation of coal particles
being injected into a boiler [1]. Our copy of this data consists of
4.6 million particles at the beginning of the simulation to 41.5 mil-
lion particles upon simulation completion. This simulation was pro-
duced using the Uintah computational framework [23].

3) Cabana Dam Break represents a free surface water column col-
lapse simulation over 138 timesteps, with each timestep containing
768K particles. Particles repel each other, creating a relatively uni-
form distribution. This simulation was produced with the Cabana
particle toolkit from the Exascale Computing Project [36].

4) Viscus Fingers models transient fluid flow obtained through a fi-
nite pointset method [17]. A cylinder is filled with pure water, then
an unlimited salt concentration is placed on top. Over the course
of 120 timesteps, (with approximately 550K particles per step), the
highly concentrated salt solution sinks down the cylinder, creating
“viscous fingers”. This dataset comes from the 2016 Scientific Vi-
sualization Contest.

5) HACC Cosmology is an evolution of dark matter and baryon
particles over the course of 5 million years, obtained using a CRK-
HACC cosmological simulation [10]. This simulation studies the
impact that Active Galactic Nuclei (AGN) have on the surrounding
matter distribution. This AGN comes from matter building near
black holes at the center of galaxies. This dataset comes from the
2019 Scientific Visualization Contest.

4.2 Evaluation

With these datasets, we measure preprocessing time, compression
effectiveness, and rendering performance on various datasets and
attributes. For “Nozzle”, we configured a constant RBF map with
100% density, while all others use a linearly increasing density map.
“Boiler” includes a larger particle radius to show overlap, while
“Dam Break” and “Viscus Fingers” use a spiky transfer function to
demonstrate a mix of volumetric and surface-like behavior. Finally,
“Cosmology” demonstrates small features in a large domain.

We render the representative view points in Figure 8, showing
single sample-per-pixel images on the left and converged 64 sample-
per-pixel images on the right. Here we also present timing estimates
in both frames/second (FPS) and in milliseconds (ms) per frame
for 1024× 1024 viewports. Because our sample space is so large,
we generally observe a large variation in framerate. Data sets with
more particles per step, larger particle overlap, presence of more
translucent particles, and small yet dense particles within a larger
computational domain all contribute to slower framerates, and vice
versa.

Another important aspect of our method is data structure con-
struction and update performance. Ray tracing based methods are
well known for their efficiency with respect to the number of input
primitives. However, a typical characteristic for SPH simulations is
time-varying particle data. While interaction over time series data
is trivial with a raster-based splatter, a common criticism towards
ray tracing methods is that they are traditionally reserved for visual-
izing static datasets, due to long acceleration structure construction
times. Fortunately, we can build these structures interactively, and
are not constrained to these prior assumptions. We report accel-
eration structure construction time (when time steps change) and
update times (when radii change) in Tab. 1. Note that these times
are in milliseconds.

Finally, we present benchmarks that explore the influence of spe-
cific parameters (particle radius, Hilbert cluster size, hardware ac-
celeration, and the impacts of spatio-temporal blue noise) on ren-
dering times, as we found that our method is particularly sensitive
to these.

4.2.1 Increasing Particle Radii

Using a range query sampling-based approach means that our
method is especially sensitive to particle overlap. Samples taken
in dense regions where numerous RBFs overlap have a higher cost
because more primitives need to be tested and contribute to the
weighted average from Equations 3 and 5. With large particle clus-
ters, smaller radii also can incur potential costs due to potentially
excessive empty space.

To evaluate this, we first explore the influence of varying parti-
cle radii. For this evaluation, we visualize datasets over multiple
randomized viewpoints representative of a typical explorative visu-
alization session, as culling effectiveness, empty space removal, etc.
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(a) Nozzle
100 M Points

768K Points / Step
105 FPS (9.5 ms)

(b) Uintah Boiler
253 M Points

23,079 K Points / Step
6.79 FPS (147.2ms)

(c) Dam Break
105 M Points

768 K Points / Step
46 FPS (21.7 ms)

(d) Viscus Fingers
67 M Points

550 K Points / Step
24 FPS (41.7 ms)

(e) Cosmology
330 M Points

500 K Points / Step
64.5 FPS (17.2 ms)

Figure 8: Datasets used for testing. All datasets are colored using per-particle velocity magnitude. Animations of all these datasets can be found
in the supplemental material. All timings above measure noisy single-sample-per-pixel images. Left sides of images show single-sample-per-
pixel images, while right sides show converged images at 64 samples per pixel, with both sides using spatio-temporal blue noise (STBN).

not only depend on spatial arrangement, but also on camera parame-
ters. This averaging over a number of camera positions also allows
us to report a performance envelope rather than a static performance
estimate.

Based on the representative viewpoints from Fig. 8, we orbit
around the centroid of the given datasets/time step and average ren-
dering times over 50 different positions. Then, we pick ranges of
radii that we find are sensible choices for our five datasets (the lower
end of the range allowing to see through most of the data while
the upper end of radii results in significant overlap), and probe that
range at uniformly spaced positions. We present results in Fig. 9 (a-
e) (the blue polylines) for cluster sizes of 1 (solid) and 16 (dotted).

We observe that render times generally go up with increasing
radii, which we primarily attribute to an increase in the number of
primitives intersected per sample taken. With decreasing particle
radii, we observed that any introduced empty space does not sig-
nificantly impact visualization performance. This is likely because
queries in empty regions intersect very few internal nodes in the
containing tree, making these queries inexpensive. Very similar ob-
servations were also drawn by prior work [27]. To our surprise,
clustering actually improves visualization performance in three of
the five datasets tested. We suspect this clustering helps more in
cases where particles are themselves highly clustered and overlap
is high, where a linear search is more efficient than exhaustive tree
traversal.

4.2.2 Particle Clustering

Next, we evaluate Hilbert cluster sizes and their influence on render
times and memory consumption. We generally find that sensible
choices for cluster sizes are power of two’s in the (discrete) range
[20,24]. We perform the same benchmark from before using the
50 different camera orbits and now vary the cluster sizes in that
range, while keeping the RBF radius fixed as the median particle
radius used in the prior test. These results are reported in the same
Figure 9, marked using red lines. By sharing a common figure, we
can compare the relative sensitivity of our method to cluster size
versus particle radius. We contrast these results to the reduction in
acceleration structure size reported in Table 2, for the same discrete
range of cluster sizes.

Interestingly, we observe that, unlike the radius variable, render-
ing times are less dependent on cluster sizes. For example, with
“Boiler”, the effect when increasing cluster size is actually posi-
tive, and the red “cluster size” curve is in general lower than the
solid blue “unclustered” line. At the same time, the improvement
in memory consumption when increasing cluster size is an order of
magnitude; cluster and acceleration structure sizes exhibit a near
perfect linear correlation. Clustering also yield improvements to

Table 1: Rebuild and Refit Times (in ms, rebuild before “/” and refit
after) for increasing particles per leaf from left to right. We observe
faster tree updates with more particles per leaf.

particles/leaf
data set 1 2 4 8 16

Viscus 1.0 / 0.0 0.8 / 0.3 0.6 / 0.2 0.5 / 0.1 0.5 / 0.1
Boiler 65. / 10. 34. / 5.9 18. / 3.6 9.4 / 2.1 4.3 / 1.4
Cabana 1.2 / 0.4 0.9 / 0.3 0.7 / 0.2 0.6 / 0.2 0.5 / 0.2
Nozzle 0.9 / 0.3 0.7 / 0.2 0.6 / 0.2 0.5 / 0.2 0.4 / 0.2
Cosmology 1.5 / 0.3 0.9 / 0.6 0.7 / 0.3 0.7 / 0.2 0.6 / 0.2

Table 2: Accel Structure Size for increasing particles per leaf from
left to right. We observe that more particles per leaf result in linear
memory savings. (in MB. OOM indicates "Out Of Memory")

Particles / Leaf
Data set Particles (in MB) 1 2 4 8 16

Viscus 9.0 81.1 40.1 20.3 10.1 5.1
Boiler 704 6200 3100 1600 797 398
Cabana 11.7 106 53.1 26.5 13.3 6.6
Nozzle 6.0 54.4 27.2 13.6 6.8 3.4
Cosmo 500K 8.0 72.5 36.2 18.1 9.1 4.5
Cosmo 50M 563 5000 2500 1200 637 318
Cosmo 500M 7400 OOM OOM OOM 8400 4200

tree construction and update times, (cf. Tab. 1), though these times
are already quite low, so we suspect the primary advantage of clus-
tering lies in memory consumption.

4.2.3 Impacts of Hardware Acceleration
With our method, we make use of ray tracing hardware to improve
query performance. These ray tracing cores cannot be disabled,
making performance improvements difficult to evaluate directly. In-
stead, we compare our hardware accelerated traversal to a software-
based, stack-facilitated, depth-first traversal on the same GPU, us-
ing an optimized linear bounding volume hierarchy (LBVH) [19],
as these trees can be built in parallel on the GPU at interactive
rates [13] to facilitate our time-series particle data.

We compare relative performance improvements in Figure 10
on three different RT core architectures: Intel ARC Alchemist,
NVIDIA’s Ampere, and AMD’s RDNA 2. NVIDIA and Intel
RT core implementations accelerate full tree traversal through a
Multiple-Instructions, Multiple-Data (MIMD) coprocessor, while
AMD’s RDNA 2 supports intrinsics for direct ray-box intersection
testing on their Single-Instruction, Multiple-Data (SIMD) compute
units. (Note that larger speedups in Figure 10 do not necessarily
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(c) Cabana Dam Break
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Figure 9: Render time (including shadows) in seconds, as a function
of particle radius (blue solid is 1 particle per cluster, blue dotted is 16
per cluster) and as a function of particles per cluster (red solid varies
particles per cluster for a fixed median radius taken from the prior
sweep ).
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(a) Speedups from RT Hardware
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(b) Speedups from Blue Noise

Figure 10: Relative speedups when rendering three datasets on
three different GPU vendors (all including secondary shadow rays
and one particle per cluster). "Uniform" and "Random" consist of 60K
synthetically generated particles distributed throughout a unit cube,
and "Cabana" is the dam break seen in Figure 8. (a) demonstrates
speedups from RT Hardware over a software-based tree traversal,
while (b) shows speedups of blue noise over a white noise sampling
distribution.

equate to faster render times).
With this setup, we evaluate relative performance improvements

on two synthetic datasets and one “real-world” dataset (i.e., the “Ca-
bana Dam Break”). The “Uniform” dataset consists of 60 K parti-
cles generated using a Poisson sphere sampling process, while the
“Random” dataset perturbates these 60 K uniform samples by a dis-
placement whose magnitude is equal to the radius of the Poisson
sphere.

Our findings show that for all architectures, we see performance
improvements by using the included RT cores and intrinsics made
available through VK_KHR_raytracing_pipeline; however, per-
formance improvements are much more significant for Intel and
NVIDIA architectures than on AMD’s RDNA 2. We speculate that
this is due to differences between MIMD and SIMD acceleration
structure traversal, as MIMD RT cores implementing full tree traver-
sal are theoretically more resiliant to divergent traversal processes.
This hypothesis is further backed by larger observed speedups on In-
tel ARC and NVIDIA when comparing the randomized particle dis-
tribution over the uniform particle distribution. In this case, AMD’s
SIMD tree traversal intrinsics yield smaller improvements over pure

Table 3: A performance comparison against a pre-interpolated 5123

voxel grid and to Knoll et al.’s RT core splatter [15] for Emission
and Absorption versions of the images in Figure 8, using a pre-
interpolated classification. To capture time series exploration per-
formance, we rebuild trees every frame for our method and Knoll et
al.’s, and for voxels we re-voxelize particles into the grid every frame.
All numbers are reported in milliseconds per frame for single-sample-
per-pixel images.

Dataset
Data Set Viscus Boiler Cabana Nozzle Cosmo

Voxels 1564.5 4248.7 699.7 379.1 406.7
- Voxelization 1562.1 4244.6 692.9 375.4 401.9
- Rendering 2.4 4.1 6.3 3.7 4.8

Knoll et al. 204.1 370.4 23.8 5.3 30.2
Ours 41.0 27.9 13.3 6.7 12.0

software-based traversal.

4.2.4 Impacts of Spatio-Temporal Blue Noise

With our approach, we use Spatio-Temporal Blue Noise to improve
image quality when exploring particle volumes over the time dimen-
sion. To our surprise, this change resulted in a noticeable positive
impact to render times. The impacts of using a blue noise distribu-
tion over a white noise distribution are shown on the right of Fig-
ure 10, where we see speedups of 1−2×. We suspect this positive
impact is because blue noise sampling patterns are more amenable
to GPU caching mechanisms than white noise between neighboring
threads.

4.2.5 Method Comparison

Finally, we evaluate the performance of our method against a prein-
terpolated voxel grid renderer and the method proposed by Knoll et
al. [15]. For all methods, we account for any necessary datastruc-
ture construction to enable time series visualization. For the voxel
grid, we atomically sum particles’ RBF contributions into a 5123

grid using a compute kernel, then divide this sum by the count of
particles intersecting each cell. Due to technical constraints of the
reference splatter, we limit our renderer to an emission and absorp-
tion lighting model. For the method by Knoll et al., we reduce the
step size slightly to reduce any severe visual artifacting.

As shown in Table 3, we observe that in all cases, voxel based
rendering is dominated by the voxelization process, especially in
cases where particle overlap is high, as is the case with “Boiler”.
This issue is present for both time series exploration as well as col-
ormap and particle radius manipulation. Rendering the resulting
grid is fast, as particle RBF integration is done a priori, but results
in visual artifacting due to quantization, especially for fine struc-
tures like those in “Cosmology”. In contrast, both our method as
well as that by Knoll et al. can interactively update the required
acceleration structures, enabling smooth interaction over time.

Our method is competitive with respect to performance to the
RT core splatter baseline. For more surface-like transfer functions
like those used in “Nozzle”, splatting benefits more from early-ray
termination. However, for more optically thin media like the water
in the “Viscus” dataset, splatting performance degrades when many
transparent particles are intersected but do not contribute to early-
ray termination. In these more volumetric cases, it appears that
radial basis functions like ours perform significantly better, as point
location can take a more conservative sampling along rays.

5 CONCLUSION

In this work, we presented a novel method for the visualization
of time series volumetric particle datasets using a combination of
attribute-aware radial basis functions, hardware ray tracing, and
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GPU-parallel tree construction. By integrating color-mapped at-
tributes of the particles into the RBF field, we were able to increase
the expressiveness of our data, and by incorporating blue noise, we
were able to significantly improve comprehension of time-series ex-
ploration.

A potential limitation of our approach is that with many large
and transparent particles, we face over-sampling issues due to ex-
cessive null collisions. Sampling empty regions with our method is
cheap, but not free. We would likely benefit from tighter bounding
majorants which would reduce the number of samples taken along
a ray, especially in these empty regions. We also suspect that an
alternative query formulation like a truncated K-Nearest-Neighbors
query would help alleviate some issues where particle overlap is
large.

Sample code and data demonstrating our method can be found
online [24] at https://github.com/gprt-org/attribute-a
ware-rbfs, providing additional opportunities for insights as GPU
architectures continue to evolve.
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